Solvability by Radicals Prepared by

© r. A.Lourdusamy M.Sc., M.MFhil., B.Ed., Ph.D.

Reader in mathematics,

St.Xavier's College (Autonomous),

Palayamkottai-627002.

Ref: Topics in Algebra By I. \mathcal{N}. Herstein

5.7 Solvability by Radicals

Given $x^{2}+3 x+4$ over the field of rational numbers F_{0},
the roots are $(-3 \pm \sqrt{-7}) / 2$
\therefore The field $\mathrm{F}_{\mathrm{o}}(\sqrt{7} \mathrm{i})$ is the splitting field of $\mathrm{X}^{2}+3 \mathrm{x}+4$ over F_{o}.

$$
\mathrm{F}_{0}(\omega)=\mathrm{F}_{0}\left(\sqrt{b^{2}-4 a c}\right)
$$

i.e., $\quad \exists \quad \gamma=-7$ in F_{o} such that the extension field $\mathrm{F}_{0}(\omega)$ where $\omega^{2}=\gamma$, $\left(\omega^{2}=b^{2}-4 \mathrm{ac}=9-16=-7\right)$ is such that it contains all the roots of $\mathrm{x}^{2}+3 \mathrm{x}+4$.

From a slightly different point of view, given the general quadratic polynomial $p(x)=x^{2}+a_{1} x+a_{2}$ over F, we can consider it as a particular polynomial over the field $\mathrm{F}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$ of rational functions in $\mathrm{a}_{1}, \mathrm{a}_{2}$ over F ; in the extension obtained by adjoining ω to $\mathrm{F}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$ where $\omega^{2}=a_{1}{ }^{2}-4 a_{2} \in F\left(a_{1}, a_{2}\right)$, we find all the roots of $p(x)$.
$\left(b^{2}-4 a c\right.$ in $\left.x^{2}+b x+c\right)$
\therefore There is a formula which expresses the roots
of $p(x)$ in terms of a_{1}, a_{2} and square roots of rational functions of these.
Similarly for cubic polynomials formulas are available to express roots in terms of co-efficients and square roots and cube roots of co-efficients. Consider $x^{3}+a_{1} x^{2}+a_{2} x+$ a_{3}.Adjoin a certain square root \& then a cube root to $F\left(a_{1}, a_{2}, a_{3}\right)$, we reach a field in which $\mathrm{p}(\mathrm{x})$ has its roots.

For $4^{\text {th }}$ degree polynomials also, we can express the roots in terms of combinations of radicals (surds) of rational functions of the co-efficients.

For polynomials of degree $5 \&$ higher, no such universal radical formula can be given, for we shall prove that it is impossible to express their roots, in general, in this way.

Definition: Given a field $F \&$ a polynomial $p(x) \in F[x]$, we
say that $\mathrm{p}(\mathrm{x})$ is solvable by radicals over \mathbf{F}
if we can find a finite sequence of fields
$\mathrm{F}_{1}=\mathrm{F}\left(\mathrm{w}_{1}\right), \mathrm{F}_{2}=\mathrm{F}_{1}\left(\mathrm{w}_{2}\right)=\mathrm{F}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right),-\mathrm{m}^{2}$,
$\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}-1}\left(\mathrm{w}_{\mathrm{k}}\right)=\mathrm{F}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{k}}\right)$ s.t.
$\mathrm{w}_{1}{ }^{\mathrm{r}}{ }_{1} \in \mathrm{~F}, \mathrm{w}_{2}{ }^{\mathrm{r}}{ }_{2}, \in \mathrm{~F}_{1,}, \ldots, \mathrm{w}_{\mathrm{k}}{ }_{\mathrm{k}}^{\mathrm{r}} \in \mathrm{F}_{\mathrm{k}-1}$ s .t. the roots of $\mathrm{p}(\mathrm{x})$ all lie in F_{k}.(as in $\mathrm{n}=2$,
$\mathrm{w}^{2}=\mathrm{v}=-7 \in \mathrm{~F}$, the field of rational n umbers)

Note: Difference between 1) splitting field \& 2)solvability.

1) existence of fields in which roots exist.
2) solving exactly, i. e. roots are expressed in terms of co-efficients
.i.e. Formulae for roots are given in terms of radicals of rational function of co-efficients .

Note: If K is splitting field of $p(x)$ over F, then $p(x)$ is solvable by radicals over F if we can find a sequence of fields as above such that $\mathrm{KC} \mathrm{F}_{\mathrm{k}}$

Remark:

If such an F_{k} can be found, we can, without loss of generality, assume it to be a normal extension of F . (By the general polynomial of degree n over F ,

$$
p(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \text {, we mean the following: }
$$

Let $F\left(a_{1}, \ldots, a_{n}\right)$ be the field of rational functions, in n variables a_{1}, \ldots, a_{n} over $F \&$ consider the particular polynomial $p(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ over the field $F\left(a_{1}, \ldots, a_{n}\right)$. We say that it is solvable by radicals if it is solvable by radicals over $F\left(a_{1}, \ldots, a_{n}\right)$ This really expresses the intuitive idea of "finding a formula" for the roots of $p(x)$ involving combination of $m^{\text {th }}$ roots, for various m 's , of rational functions in a_{1}, \ldots , a_{n}. For $\mathrm{n}=2,3,4$, this can always be done.

For $\mathrm{n} \geq 5$, Abel proved that this cannot be done.

In fact, we shall give a criterion for this in terms of the Galois group of the polynomial. But first we must develop a few purely group theoretical results.

Definition: A group G is solvable if we can find a finite chain of subgroups $G=N_{0} \supset N_{1} \supset N_{2} \supset \ldots \supset N_{k}=(e)$, where each N_{i} is a normal subgroup of N_{i-1} and such that every factor group $\mathrm{N}_{\mathrm{i}-\mathrm{I}} / \mathrm{N}_{\mathrm{i}}$ is abelian.

Result 1 Every abelian group is solvable.

Proof: \quad Take $\mathrm{N}_{0}=\mathrm{G}_{\mathrm{C}} \mathrm{N}_{1}=(\mathrm{e})$
$\therefore \exists$ a finite chain of subgroups $\mathrm{G}=\mathrm{N}_{0} \supset N_{1}=(e)$.
where N_{1} is a normal subgroup of N_{0}

$$
\begin{aligned}
\left(\mathrm{gng}^{-1}\right. & =\mathrm{geg}^{-1} \quad \because \mathrm{~N}_{1}=(\mathrm{e}) \\
& \left.=\mathrm{gg}^{-1}=\mathrm{e} \in \mathrm{~N}_{1}, \forall \mathrm{~g} \in \mathrm{G} \quad \forall \mathrm{e} \in \mathrm{~N}_{1}\right)
\end{aligned}
$$

$\& \mathrm{~N}_{0} / \mathrm{N}_{1}=\mathrm{G} /(\mathrm{e}) \approx \mathrm{G}$ is abelian.
\therefore Every abelian group is solvable.

Result 2: S_{3} is solvable.

Proof: $S_{3}=\{(1),(1,2),(2,3),(3,1),(1,2,3),(1,3,2)\}$
$A_{3}=\left\{(1),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$

Take $\mathrm{N}_{0}=\mathrm{S}_{3}, \mathrm{~N}_{1}=\mathrm{A}_{3}, \mathrm{~N}_{2}=\{(1)\}$
Then \exists a finite chain of subgroups
$\mathrm{S}_{3}=\mathrm{N}_{0} \supset \mathrm{~N}_{1} \supset \mathrm{~N}_{2}=(e)$, (is a solvable series for S_{3}).

We know that A_{3} is a normal subgroup of $\mathrm{P}_{3}=\mathrm{S}_{3}$
$\therefore \mathrm{N}_{\mathrm{I}}$ is a normal subgroup of N_{0}
Also (1) $=\mathrm{N}_{2}$ is a normal group of N_{1}
The quotient groups $N_{0} N_{1} \& N_{1} / N_{2}$ are of orders $2 \& 3$ respectively.

We know that "all groups of order $2 \& 3$ are abelian"
$\therefore \mathrm{N}_{0} / \mathrm{N}_{1} \& \mathrm{~N}_{1} / \mathrm{N}_{2}$ are abelian
$\therefore \exists$ a finite chain of subgroups $\mathrm{S}_{3}=\mathrm{N}_{0} \supset \mathrm{~N}_{1} \supset \mathrm{~N}_{2}=(\mathrm{e})$,
such that $\mathrm{N}_{0} / \mathrm{N}_{1} \& \mathrm{~N}_{1} / \mathrm{N}_{2}$ are abelian.

Hence S_{3} is a solvable.

Show that S_{4} is solvable.

Proof:

Let A_{4} be the alternating group of permutations of degree 4 .
A_{4} is a normal subgroup of $P_{4}=S_{4}$

Let $\mathrm{V}_{4}=\{\mathrm{e},(12)(34),(13)(24),(14)(23)\}$

Clearly V_{4} is a normal subgroup of A_{4}.

Take $\mathrm{N}_{0}=\mathrm{S}_{4}, \mathrm{~N}_{1}=\mathrm{A}_{4}, \mathrm{~N}_{2}=\mathrm{V}_{4}, \& \mathrm{~N}_{3}=(\mathrm{e})$

Claim: $S_{4}=N_{0} \supset N_{1} \supset N_{2} \supset N_{3}=(e)$ is a solvable series for $\mathrm{P}_{4}=\mathrm{S}_{4}$. Clearly (e) is a normal subgroup of N_{2}.

The quotient groups $S_{4} / N_{1}, N_{1} / N_{2}, \& N_{2} / N_{3}$ are of orders $2,3 \& 4$ respectively.

We know that "all groups of order up to order 5 are abelian"
$\therefore \mathrm{S}_{4} / \mathrm{N}_{1}, \mathrm{~N}_{1} / \mathrm{N}_{2}, \& \mathrm{~N}_{2} / \mathrm{N}_{3}$ are abelian
$\therefore \exists$ a finite chain of subgroups of $S_{4}=N_{0} \supset N_{1} \supset N_{2} \supset N_{3}=(e)$ such that
s.t $\mathrm{N}_{0} / \mathrm{N}_{1}, \mathrm{~N}_{1} / \mathrm{N}_{2}, \& \mathrm{~N}_{2} / \mathrm{N}_{3}$ are abelian
\therefore It is a solvable series.

Hence S_{4} is solvable.
$\underline{\text { Note: }}$ For $\mathrm{n} \geq 5$ we show in T 5.7.1 below that S_{n} is not solvable.

Alternative description for solvability.

Definition: Given the group G and elements a, b in G , then the commutator of $a \& b$ is the element $a^{-1} b^{-1} a b$.

The commutator subgroup, G^{1}, of G is the subgroup of G generated by all the commutators in G. i.e., G^{1} is generated by $\left\{a^{-1} b^{-1} a b / a, b \in G\right\}$

Note: 1. We can also define the commutator of $\mathrm{a} \& \mathrm{~b}$ to be $\mathrm{aba} \mathrm{a}^{-1} \mathrm{~b}^{-1}$. In this case, G^{1} is generated by $\left\{a b a^{-1} b^{-1} / a, b \in G\right\}$.
2. The commutator subgroup G^{1} of a group is the smallest subgroup of G containing the set of all commutators in G.

Result: Let G^{1} be the commutator subgroup of a group
Then G is abelian iff $\mathrm{G}^{1}=(\mathrm{e})$.
Theorem: Let G be a group $\& G^{1}$ be the commutator subgroup of G. Then
(i) G^{1} is normal in G.
(ii) $\mathrm{G} / \mathrm{G}^{1}$ is abelian
(iii) If N is any normal subgroup of G, then G / N is abelian iff $G^{1} \subseteq N$
(iv) If H is a subgroup of G , such that $\mathrm{H} \supseteq G^{\prime}, \mathrm{H}$ is a normal subgroup of G .
 then G^{1} is the smallest subgroup of G containing U .
(i) Let $\mathrm{x} \in \mathrm{G} \& \mathrm{c} \in \mathrm{G}^{\prime}$

$$
\begin{aligned}
& \text { Now } x c x^{-1}=\left(\mathrm{xcx}^{-1}\right) \mathrm{c}^{-1} \mathrm{c} \\
& \quad=\left(\mathrm{xcx}^{-1} \mathrm{c}^{-1}\right) \mathrm{c}
\end{aligned} \text { Now } \mathrm{x}, \mathrm{c} \in \mathrm{G} \Rightarrow \mathrm{xcx}^{-1} \mathrm{c}^{-1} \in \mathrm{G}^{\prime} .
$$

(ii) $\mathrm{a}, \mathrm{b} \in \mathrm{G} \Rightarrow \mathrm{G}^{\prime} \mathrm{a}, \mathrm{G}^{\prime} \mathrm{b} \in \mathrm{G} / \mathrm{G}^{1}$

We have $a b a^{-1} b^{-1} \in U$
$\Rightarrow \mathrm{aba}^{-1} \mathrm{~b}^{-1} \in \mathrm{G}^{\prime} \quad\left(\because \mathrm{U} \subset \mathrm{G}^{\prime}\right)$
$\Rightarrow(\mathrm{ab})(\mathrm{ba})^{-1} \in \mathrm{G}^{\prime}$
$\Rightarrow \mathrm{G}^{\prime}(\mathrm{ab})=\mathrm{G}^{\prime}(\mathrm{ba})$
$\Rightarrow\left(G^{\prime}\right)\left(G^{\prime} b\right)=\left(G^{\prime} b\right)\left(G^{\prime} a\right)$
$\Rightarrow \mathrm{G} / \mathrm{G}^{\prime}$ is abelian
(iii)Let N be any normal subgroup of G .

Let $\mathrm{a}, \mathrm{b} \in \mathrm{G} \Rightarrow \mathrm{Na}, \mathrm{Nb} \in \mathrm{G} / \mathrm{N}$

Let G / N be abelian.

Then $(\mathrm{Na})(\mathrm{Nb})=(\mathrm{Nb})(\mathrm{Na})$
$\Rightarrow \mathrm{Nab}=\mathrm{Nba}$
$\Rightarrow(\mathrm{ab})(\mathrm{ba})^{-1} \in \mathrm{~N}$
$\Rightarrow \mathrm{aba}^{-1} \mathrm{~b}^{-1} \in \mathrm{~N} \Rightarrow \mathrm{U} \subseteq \mathrm{N}$
$\left(\because a b a^{-1} b^{-1}\right.$ is any element of U$)$
$\therefore \mathrm{N}$ is the sub group of G containing U .
But G^{1} is the smallest subgroup of G containing U .
$\Rightarrow \mathrm{N} \supseteq \mathrm{G}^{\prime}$

Conversely, let $\mathrm{G}^{\prime} \subseteq \mathrm{N}$

Now G' is the Smallest subgroup of G Containing $U \& G^{\prime} \subseteq N$

$$
\begin{aligned}
& \Rightarrow U \subseteq \mathrm{G}^{1} \subseteq \mathrm{~N} \\
& \Rightarrow \mathrm{U} \subseteq \mathrm{~N} \\
& \Rightarrow \mathrm{aba} \mathrm{a}^{-1} \mathrm{~b}^{-1} \in \mathrm{~N} \\
& \Rightarrow(\mathrm{ab})(\mathrm{ba})^{-1} \in \mathrm{~N} \\
& \Rightarrow \mathrm{Nab}=\mathrm{Nba} \\
& \Rightarrow(\mathrm{Na})(\mathrm{Nb})=(\mathrm{Nb})(\mathrm{Na})
\end{aligned}
$$

$\Rightarrow \mathrm{G} / \mathrm{N}$ is abelian

(iv) Given

H is a subgroup of G such that $H \supseteq G^{1}$

Let $\mathrm{g} \in \mathrm{G} \& \mathrm{~h} \in \mathrm{H}$

Then gh $\mathrm{g}^{-1}=\left(\mathrm{gh} \mathrm{g}^{-1}\right)\left(\mathrm{h}^{-1} \mathrm{~h}\right)$

$$
=\left(\mathrm{gh} \mathrm{~g}^{-1} \mathrm{~h}^{-1}\right) \mathrm{h}
$$

Now gh g ${ }^{-1} h^{-1} \in G$
$\Rightarrow \mathrm{gh} \mathrm{g}^{-1} \mathrm{~h}^{-1} \in \mathrm{H}$
$\therefore \mathrm{gh} \mathrm{g}^{-1} \mathrm{~h}^{-1} \in \mathrm{H} \& \mathrm{~h} \in \mathrm{H}$
$\Rightarrow\left(\mathrm{gh} \mathrm{g}^{-1} \mathrm{~h}^{-1}\right) \mathrm{h} \in \mathrm{H}$
$\Rightarrow \mathrm{gh}^{-1} \in \mathrm{H} \forall \mathrm{g} \in \mathrm{G}, \mathrm{h} \in \mathrm{H}$
$\therefore \mathrm{H}$ is the normal sub group of G .

Note: G' is a group in its own right, so we can speak of its commutator subgroup $G^{(2)}$ $=\left(G^{1}\right)^{1}$
i.e., $G^{(2)}$ is the subgroup of G generated by all elements
$a^{1} b^{1}\left(a^{1}\right)^{-1}\left(b^{1}\right)^{-1}$ or $\left(a^{1}\right)^{-1}\left(b^{1}\right)^{-1} a^{1} b^{1}$ where $a^{1}, b^{1} \in G^{\prime}$

We know G^{1} is normal in G.
$\therefore\left(\mathrm{G}^{1}\right)^{1}=\mathrm{G}^{(2)}$ is normal in G^{\prime} It can be easily proved that $\mathrm{G}^{(2)}$ is normal in G as well.

Continuing in this way we can define higher commutator subgroup $G^{(m)}$ by $G^{(m)}$ $=\left(\mathrm{G}^{(\mathrm{m}-1)}\right)^{\text {! }}$

This $G^{(m)}$ is called $m^{\text {th }}$ commutator sub group or $m^{\text {th }}$ derived subgroup of G. It is easy to see that $\mathrm{G}^{(\mathrm{m})}$ is a normal subgroup of G .

We know G / G is abelian.

$$
\therefore G^{(\mathrm{m}-1)} / \mathrm{G}^{(\mathrm{m})} \text { is abelian. }
$$

(In terms of higher commutator subgroups of a group G we have a very succinct (important) criterion for solvability of G.)

L 5.7.1 A group G is solvable it $G^{(k)}=(\mathrm{e})$ for some integer k.

Proof: The 'if' part

$$
\text { Let } \mathrm{G}^{(\mathrm{k})}=(\mathrm{e}) \text { for some integer } \mathrm{k} .
$$

To Prove G is solvable.

$$
\text { Let } \mathrm{N}_{0}=\mathrm{G}, \mathrm{~N}_{\mathrm{l}}=\mathrm{G}^{1}, \mathrm{~N}_{2}=\mathrm{G}^{(2), \ldots, \mathrm{N}_{\mathrm{k}}=\mathrm{G}^{(\mathrm{k})}=(\mathrm{e}), ~(}
$$

Then $G=N_{o} \supseteq N_{1} \supseteq N_{2} \supseteq \ldots \supseteq N_{k}=(e)$
we know G^{1} is a normal subgroup of G.
$\therefore \mathrm{G}^{(\mathrm{i})}=\left(\mathrm{G}^{(\mathrm{i}-1)}\right)^{\prime}$ is a normal sub group of $\mathrm{G}^{(\mathrm{i}-1)}$ for each i.
$\Rightarrow \mathrm{N}_{\mathrm{i}}$ is a normal subgroup of $\mathrm{N}_{\mathrm{i}-1}$ for each i .

Also $\frac{N_{i-1}}{N_{i}}=\frac{G^{(i-1)}}{G^{(i)}}=\frac{G^{(i-1)}}{\left(G^{(i-1)}\right)^{\prime}}$
we know that G / G is abelian
$\therefore \frac{\mathrm{G}^{(\mathrm{i}-1)}}{\left(\mathrm{G}^{(\mathrm{i}-1)}\right)^{1}}$ is abelian
$\Rightarrow \mathrm{N}_{\mathrm{i}-1} / \mathrm{N}_{\mathrm{i}}$ is abelian for each i .
$\therefore \exists$ a finite chain of subgroups.
$\mathrm{G}=\mathrm{N}_{\mathrm{o}} \supseteq \mathrm{N}_{1} \supseteq \mathrm{~N}_{2} \supseteq \ldots \supseteq \mathrm{~N}_{\mathrm{k}}=(\mathrm{e})$, where each N_{i} is a normal subgroup of $\mathrm{N}_{\mathrm{i}-1}$ and such that every factor group $\mathrm{N}_{\mathrm{i}-1} / \mathrm{N}_{\mathrm{i}}$ is abelian.
$\therefore \mathrm{G}$ is solvable.
'only if' part

Let G be a solvable Group.
$\therefore \exists$ a finite chain of subgroups $G=N o \supseteq N_{1} \supseteq N_{2} \supseteq \ldots \supseteq N_{k}=(e)$,
where each N_{i} is a normal subgroup of N_{i-1} and such that every factor group N_{i-1} / N_{i} is abelian.
we know "If N is normal subgroup of G , then G / N is abelian iff

$$
G^{1} \subset N "
$$

$$
\begin{aligned}
& \text { So } \mathrm{N}_{\mathrm{i}-1} / \mathrm{N}_{\mathrm{i}} \text { is abelian } \Rightarrow \mathrm{N}_{\mathrm{i}-1}^{1} \subset \mathrm{~N}_{\mathrm{i}} \\
& \therefore \mathrm{Ni} \supset \mathrm{Ni}^{\prime}-1 \text { for each } \mathrm{i} \text {. Hence } \\
& \mathrm{N}_{1} \supset \mathrm{~N}_{0}{ }^{\prime}=\mathrm{G}^{\prime} \\
& N_{2} \supset N_{1}^{\prime} \supseteq\left(G^{\prime}\right)^{1}=G^{(2)} \\
& \mathrm{N}_{3} \supset \mathrm{~N}_{2}{ }^{\prime} \supset\left(\mathrm{G}^{(2)}\right)^{1}=\mathrm{G}^{(3)} \\
& \mathrm{N}_{\mathrm{i}} \supset \mathrm{G}^{\mathrm{i})} \\
& \mathrm{N}_{\mathrm{k}} \supset \mathrm{G}^{(\mathrm{k})}
\end{aligned}
$$

$\left.\begin{array}{l}\text { For some } \mathrm{k},(\mathrm{e})=\mathrm{N}_{k} \supseteq \mathrm{G}^{(\mathrm{k})} \\ \text { But }(\mathrm{e}) \subseteq \mathrm{G}^{(\mathrm{k})} \text { always. } \\ \text { Hence } \mathrm{G}^{(\mathrm{k})}=(\mathrm{e}) .\end{array}\right\}$

Corollary: If G is a solvable group and if \bar{G} is a homomorphic image of G,
then $\overline{\mathrm{G}}$ is solvable.

Proof: \bar{G} is a homomorphic image of G

$$
\Rightarrow(\overline{\mathrm{G}})^{(\mathrm{k})} \text { is the image of } \mathrm{G}^{(\mathrm{k})}
$$

$$
\text { Now } G \text { is solvable } \Rightarrow G^{(k)=}(e) \text { for some } k .
$$

$$
\Rightarrow(\overline{\mathrm{G}})^{(\mathrm{k})}=(\mathrm{e}) \text { for the same } \mathrm{k}
$$

(\because a homomorphism maps identity to identity)
$\therefore \overline{\mathrm{G}}$ is solvable.

Next lemma is the key step in proving that $S_{n}, n \geq 5$ is not solvable).

L 5.7.2 $\left.\begin{array}{l}\text { Let } G=S_{n} \text { where } n \geq 5 \text {; then } G^{(k)} \text { for } \\ k=1,2, \ldots, \text { contains every } 3 \text { - cycle of } S_{n}\end{array}\right\}$
Proof: We know "If N is a normal subgroup of a group G, then the commutator subgroup N' of N is also normal subgroup of G."

Claim: If N is a normal subgroup of $\mathrm{G}=\mathrm{S}_{\mathrm{n}}$ where $\mathrm{n} \geq 5$,
which contains every 3- cycle in S_{n},
then N ' must also contain every 3- cycle.
Suppose $\mathrm{a}=\left(\begin{array}{ll}1 & 2\end{array}\right), \mathrm{b}=\left(\begin{array}{ll}1 & 4\end{array}\right)$ are in N .

Also $\mathrm{a}^{-1} \mathrm{~b}^{-1} \mathrm{ab} \in \mathrm{N}^{\prime}$ (as a commutator of elements of N)

$$
\Rightarrow\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) \in \mathrm{N}^{\prime} \Rightarrow \Pi^{-1}\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) \Pi \in \mathrm{N}^{\prime} \forall \Pi \in \mathrm{S}_{\mathrm{n}}\left(\because \mathrm{~N}^{\prime} \text { is normal }\right)
$$

Now let $\left(i_{1}, i_{2}, i_{3}\right)$ be any 3- cycle in S_{n}
where i_{1}, i_{2}, i_{3} are any 3 distinct integers between $1 \& n$.
Choose Π in S_{n} Such that $\Pi(1)=\mathrm{i}, \Pi(4)=\mathrm{i}_{2} \& \Pi(2)=\mathrm{i}_{3}$.
Then $\Pi^{-1}\left(\begin{array}{ll}1 & 2\end{array}\right) \Pi=\left(i_{1}, i_{2}, i_{3}\right)$ (i_{1} goes to 1 under Π^{-1}
1 goes to 4 under (142)
4 goes to i_{2} under Π
So i_{1} goes to i_{2} under $\Pi^{-1}\left(\begin{array}{ll}142\end{array}\right) \Pi$.
Similarly i_{2} goes to i_{3}, i_{3} goes to i_{1}).
$\Rightarrow\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}\right) \in \mathrm{N}^{1}$.
$\Rightarrow \mathrm{N}^{\prime}$ contains all 3-cycles.

Let $\mathrm{N}=\mathrm{G}$.

G is normal in $\mathrm{G} \&$ contains all 3- cycles
$\Rightarrow G^{\prime}$ contains all 3- cycles.

Similarly G' is normal in G
$\Rightarrow\left(\mathrm{G}^{1}\right)^{\prime}$ contains all 3- cycles.

Similarly $\mathrm{G}^{(2)}$ is normal in G .
$\Rightarrow\left(G^{2}\right)^{1}=G^{(3)}$ contains all 3- cycles.
Continuing in this way, we conclude that $\mathrm{G}^{(\mathrm{K})}$ contains all 3-cycles for arbitrary k .
(A direct consequence of this lemma is the interesting group theoretic result)

T 5.7.1 $\quad S_{n}$ is not solvable for $n \geq 5$
Proof If $G=S_{n}, G^{(K)}$ contains all 3-cycles in S_{n} for every k where $n \geq 5$

$$
\begin{aligned}
& \Rightarrow G^{(k)} \neq(\mathrm{e}) \text { for any } k . \\
& \Rightarrow G=S_{n}, n \geq 5 \text {, is not solvable. }
\end{aligned}
$$

(Interrelating the solvability by radicals of $\mathrm{p}(\mathrm{x})$ with the solvability of the Galois coup of $p(x)$. But first we need a result about the Galois group of a certain type of गlynomial.)

L 5.7.3 Suppose that the field F contains all the $\mathrm{n}^{\text {th }}$ roots of unity (for some particular n) \& suppose that $\mathrm{a} \neq 0$ in F . Let $\mathrm{x}^{\mathrm{n}}-\mathrm{a} \in \mathrm{F}[\mathrm{x}]$ \& let K be its splitting field over F . Then (1) $K=F(u)$ where u is any root of $x^{n}-a$.
(2) The Galois group of $\mathrm{x}^{\mathrm{n}}-\mathrm{a}$ over F is abelian.

Proof: F has all $n^{\text {th }}$ roots ($\mathrm{e}^{2 \Pi \text { iir/n }}, \mathrm{r}=0$ to $\mathrm{n}-1$) of unity.
$\Rightarrow \mathrm{F}$ has $\xi=\mathrm{e}^{2 \Pi i / \mathrm{n}}$

Note $\xi^{\mathrm{n}}=1$ but $\xi^{\mathrm{m}} \neq 1$ for $0<\mathrm{m}<\mathrm{n}$.
Let $u \in K$ be any root of $x^{n}-a$.
$\Rightarrow \mathrm{u}, \xi_{\mathrm{u}}, \xi^{2} \mathrm{u}, \ldots ., \xi^{\mathrm{n}-1} \mathrm{u}$ are all the roots of $\mathrm{x}^{\mathrm{n}}-\mathrm{a}$.

These roots are distinct, for,

$$
\begin{aligned}
& \xi^{\mathrm{i}} \mathrm{u}=\xi^{\mathrm{j}} \mathrm{u} \text { with } 0 \leq i<j<n \\
& \Rightarrow\left(\xi^{\mathrm{i}}-\xi^{\mathrm{j}}\right) \mathrm{u}=0 \\
& \Rightarrow \xi^{\mathrm{i}}-\xi^{\mathrm{j}}=0 \quad(\because \mathrm{u} \neq 0) \\
& \Rightarrow \xi^{\mathrm{i}}=\xi^{\mathrm{j}} \\
& \Rightarrow \xi^{\mathrm{j}-\mathrm{i}}=1 \Rightarrow \Leftarrow \text { to } 0<\mathrm{j}-1<\mathrm{n}
\end{aligned}
$$

$\therefore \xi \in \mathrm{F} \Rightarrow \xi \in \mathrm{F}(\mathrm{u})$
\therefore all of $u, \xi u, \ldots, \xi^{n-1} u$ are in $F(u)$
$\Rightarrow \mathrm{F}(\mathrm{u})$ splits $\mathrm{x}^{\mathrm{n}}-\mathrm{a}$

Also no proper subfield of $\mathrm{F}(\mathrm{u})$ which contains F also contains u .
\Rightarrow No proper subfield of $F(u)$ can split $x^{n}-a$.
$\therefore \mathrm{F}(\mathrm{u})$ is the splitting field of $\mathrm{x}^{\mathrm{n}}-\mathrm{a}$.

Hence $K=F(u)$

To Prove_ $G(K, F)$ is abelian.
Let $\sigma, \tau \in \mathrm{G}(\mathrm{K}, \mathrm{F})$
$\Rightarrow \sigma \& \tau$ are automorphisms of $\mathrm{K}=\mathrm{F}(\mathrm{u})$ leaving every element of F fixed.
$\Rightarrow \sigma(\mathrm{u}) \& \tau(\mathrm{u})$ are roots of $\mathrm{x}^{\mathrm{n}}-\mathrm{a}\left(\because \mathrm{u}\right.$ is a root of $\left.\mathrm{x}^{\mathrm{n}}-\mathrm{a}\right)$
$\Rightarrow \sigma(\mathrm{u})=\xi^{\mathrm{i}} \mathrm{u} \& \tau(\mathrm{u})=\xi^{\mathrm{j}} \mathrm{u}$ for some $\mathrm{i} \& \mathrm{j}$.
$\left.\therefore \sigma \tau(\mathrm{u})=\sigma\left(\xi^{\mathrm{j}} \mathrm{u}\right)=\xi^{\mathrm{j}} \sigma(\mathrm{u}) \quad\left(\because \xi^{\mathrm{j}} \in \mathrm{F}\right)\right)$
$=\xi^{j} \xi^{i} u=\xi^{i+j} u$.
III ${ }^{1 \mathrm{y}} \tau \sigma(\mathrm{u})=\xi^{\mathrm{i}+\mathrm{j}} \mathrm{u}$.
$\therefore \sigma \tau(\mathrm{u})=\tau \sigma(\mathrm{u}) \forall \mathrm{u} \in K$.
$\therefore \sigma \tau=\tau \sigma \forall \sigma, \tau \in \mathrm{G}(\mathrm{K}, \mathrm{F})$
\Rightarrow The Galois group $G(K, F)$ is abelian.

Note:From the Lemma, if F has all $\mathrm{n}^{\text {th }}$ roots of unity,
then adjoining one root of x^{n}-a to F , where $\mathrm{a} \in \mathrm{F}$, gives us the splitting field of $\mathrm{x}^{\mathrm{n}}-\mathrm{a}$ \&
$\mathrm{K}=\mathrm{F}(\mathrm{u})$ i.e., the splitting field is a normal extension of F .
T 5.7.2 Let F be a field which contains all $\mathrm{n}^{\text {th }}$ roots of unity for every integer n .
If $p(x) \in F[x]$ is solvable by radicals over F,
then the Galois group ,over F,

$$
\text { of } \mathrm{p}(\mathrm{x}) \text { is a solvable group. }
$$

Proof.
Let K be the splitting field of $p(x)$ over F
\therefore the Galois group of $\mathrm{p}(\mathrm{x})$ over F is $\mathrm{G}(\mathrm{K}, \mathrm{F})$.
Given: $p(x)$ is solvable by radicals
$\Rightarrow \exists$ a sequence of fields
$\mathrm{F} \subset \mathrm{F}_{1}=\mathrm{F}\left(\mathrm{w}_{1}\right) \subset \mathrm{F}_{2}=\mathrm{F}_{1}\left(\mathrm{w}_{2}\right) \subset \ldots \subset \mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}-1}\left(\mathrm{w}_{\mathrm{k}}\right)$
where ${ }^{w}{ }_{1}{ }^{r} \in F, w_{1}{ }^{r_{2}} \in F_{1}, \ldots, w_{k}{ }^{r_{k}} \in F_{k-1} \& K \subset F_{k}$
(by note of L.5.7.3) Without Loss of Generality, assume that F_{k} is normal extension of F .
Also F_{k} is normal extension of each F_{i}.
(Again by note) Each F_{i} is a normal extension of $\mathrm{F}_{\mathrm{i}-1}$, \& since F_{k} is normal over

$$
\mathrm{F}_{\mathrm{i}-1}, \text { by F T G T }(\mathrm{T} 5.6 .6)
$$

$\mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{i}}\right)$ is a normal sub group in $\mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{i}-1}\right)$
Consider the chain $G\left(F_{k}, F\right) \supset G\left(F_{k}, F_{1}\right) \supset G\left(F_{k}, F_{2}\right) \supset \ldots \supset$

$$
\mathrm{G}\left(\mathrm{~F}_{\mathrm{k}}, \mathrm{~F}_{\mathrm{k}-1}\right) \supset(\mathrm{e}) . \cdots(\mathrm{l})
$$

Note that each subgroup in this chain is a normal subgroup in the one proceeding it.

By F T G T, $\mathrm{G}\left(\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}-1}\right) \approx \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{i}-1}\right) / \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{i}}\right)$

(L 5.7.3) we know The Galois group $\mathrm{G}\left(\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}-1}\right)$ is abelian
\Rightarrow each quotient group $\mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{i}-1}\right) / \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{i}}\right)$ of the chain (1) is abelian $\Rightarrow \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}\right)$ is solvable.

Now $\mathrm{K} \subset \mathrm{F}_{\mathrm{K}} \& \mathrm{~K}$ is a normal extension of F (being a splitting field)
$\Rightarrow \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{K}\right)$ is a normal subgroup of $\mathrm{G}\left(\mathrm{F}_{\mathrm{k},} \mathrm{F}\right)$ \&
$\mathrm{G}(\mathrm{K}, \mathrm{F}) \approx \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}\right) / \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{K}\right) \quad($ by F T G T)
$\Rightarrow \mathrm{G}(\mathrm{K}, \mathrm{F})$ is a homomorphic image of $\mathrm{G}\left(\mathrm{F}_{\mathrm{k}, \mathrm{F}}\right)$
$\Rightarrow \mathrm{G}(\mathrm{K}, \mathrm{F})$ is solvable
$\left(\because \mathrm{G}\left(\mathrm{F}_{\mathrm{k}}, \mathrm{F}\right)\right.$ is solvable \&
homomorphic image of a solvable group is solvable)
\therefore The Galois group of $\mathrm{p}(\mathrm{x})$ over F is solvable.

Note: 1The converse of above theorem is true
2.Theorem \& its converse are true even if F does not contain roots of unity.

Meaning of the general polynomial of degree n.
Let $F\left(a_{1}, \ldots, a_{n}\right)$ be the field of rational functions in the n invariables a_{1}, \ldots, a_{n} over F.
$p(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}$ over the field $F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called the general polynomial of degree n over the field F.
$P(x)$ is solvable by radicals if it is solvable by radicals over $F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
It is easy to show that the Galois group of

$$
p(x)=x^{n}+a_{1} x^{x-1}+\ldots+a_{n} \text { over } F\left(a_{1}, \ldots, a_{n}\right) \text { is } S_{n}
$$

T 5.7.3 (Abel's theorem) The general polynomial of degree $\mathrm{n} \geq 5$ is not solvable by

 radicals.Proof. (T 5.6.3) If $\mathrm{F}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ is the field of rational functions in the n variables $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ then the Galois group of

$$
p(t)=a_{0}+a_{1} l^{n-1}+\ldots+a_{n} \text { over } F\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { is } S_{n} .
$$

(T 5.7.1) S_{n} is not a solvable group when $\mathrm{n} \geq 5$.
(T 5.7.2) $\therefore \mathrm{p}(\mathrm{t})$ is not solvable by radicals over $\mathrm{F}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ when $\mathrm{n} \geq 5$.

7.1 finite fields

L 7.1.1 Let F be a finite field with q elements \&suppose that $\mathrm{F} \subset \mathrm{K}$ where K is also a finite field. Then K has q^{n} elements where $\mathrm{n}=[\mathrm{K}: \mathrm{F}]$

Proof; $F \subset K \& K$ is finite
$\Rightarrow \mathrm{K}$ is a finite dimension vector space over F
$\Rightarrow[\mathrm{K}: \mathrm{F}]=\mathrm{n}$
Let a basis of K over F be $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$
Then every element in K has a unique representation in the form $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\ldots+\alpha_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}} \in \mathrm{F}$
\therefore Number of elements in $\mathrm{K}=$ the number of $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\ldots+\alpha_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$ as the $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}}$ range over $F \&|F|=q$
$\therefore|K|=q^{\mathrm{n}}$ since each co-efficient can have q values.

Corollary:1

Let F be a finite field. Then F has p^{m} elements where the prime number p is the characteristic of F

Proof:

F has a finite number of elements
$\Rightarrow \mathrm{f} 1=0$ where $\mathrm{f}=|\mathrm{F}| \quad\left(\mathrm{a}^{\mathrm{o}(\mathrm{GI})}=\mathrm{e}\right)$ (if G is finite.)
$\Rightarrow \mathrm{F}$ has characteristic p for some prime number p
$\Rightarrow \mathrm{F}$ contains a field $\mathrm{F}_{0} \approx \mathrm{~J}_{\mathrm{p}}$. Note F_{0} has p elements
$\Rightarrow F$ has ${ }^{\mathrm{m}}$ elements where $\mathrm{m}=\left[\mathrm{F}: \mathrm{F}_{0}\right]($ by L 7.1 .1$)$

Corollary: 2 If the finite field F has p^{m} elements, then every $a \in F$ satisfies $a^{p^{m}}=a$
Proof; If $\mathrm{a}=0$ then clearly $\mathrm{a}^{\mathrm{pm}}=\mathrm{a}$
On the other hand, the non zero elements of F form a group under multiplication

$$
\begin{aligned}
& \text { of order } \mathrm{p}^{\mathrm{m}}-1 \\
& \therefore \mathrm{ap}^{\mathrm{m}}-1=1 \quad \forall \mathrm{a} \neq 0 \text { in } \mathrm{F} .\left(a^{o(G)}=e\right) \text { (if G is finite.) } \\
& \Rightarrow \mathrm{a}^{\mathrm{p}^{\mathrm{m}}}=\mathrm{a}
\end{aligned}
$$

(From corollary 2 we can easily pass to)

L.7.1.2

If the finite field F has p^{m} elements, then the polynomial $x^{m}-x$ in $F[x]$ factors in $F[x]$ as $\mathrm{x}^{\mathrm{p}}{ }^{\mathrm{m}}-\mathrm{x}=\prod_{\lambda \in F}(x-\lambda)$

Proof:

we know that (L5.3.2) "A polynomial of degree n over a field can have atmost n roots in any extension field."
$\therefore \mathrm{x}^{\mathrm{p}}-\mathrm{x}$ has at most p^{m} roots in F .
We know that (cor 2 toL7.1.1) If the finite field F has p^{m} elements, then every $\mathrm{a} \in \mathrm{F}$ satisfies $\mathrm{a}^{\mathrm{p}}=\mathrm{a}$
\therefore all the p^{m} elements of F are roots of $\mathrm{x}^{\mathrm{p}}-\mathrm{x}$.
Also we know that (cor to L5.3.1) If $a \in K$ is a root of $p(x) \in F[x]$, where $F \subset K$, then in $K[x]$, $(x-a) \mid p(x) . "$
\therefore For each $\lambda \in \mathrm{F},(\mathrm{x}-\lambda) \mid \mathrm{x}^{\mathrm{p}^{\mathrm{m}}}-\mathrm{x}$.
$\therefore \mathrm{x}^{\mathrm{m}}-\mathrm{x}=\prod_{\lambda \in F}(x-\lambda)$

Corollary; 1

If the field F has p^{m} elements, then F is the splitting field of the polynomial $x^{p^{m}}-x$

Proof;

By L 7.1.2, $\mathrm{x}^{\mathrm{p}^{\mathrm{m}}}-\mathrm{x}$ certainly splits in F . However, it cannot split in any smaller field for that field would have to have all the roots of this polynomial \& so would have to have at least p^{m} elements. Thus F is the splitting field of $\mathrm{x}^{\mathrm{p}^{\mathrm{m}}}-\mathrm{x}$.

L 7.1.3

Any two finite fields having the same number of elements are isomorphic

Proof:

Let these fields have p^{m} elements.
Then (by the above corollary) they are both splitting fields of the polynomial $x^{p^{m}}-x$ over J_{p}.
\Rightarrow The fields are isomorphic (\because any 2 splitting fields are isomorphic)

L7.1.4

For every prime number p and every positive integer m, \exists a field having p^{m} elements.

Proof

Consider the polynomial $\mathrm{x}^{\mathrm{p}}-\mathrm{x}$ in $J_{p}[\mathrm{x}]$, the ring of polynomials. in x over J_{p}, the field of integers mod p .

Let K be the splitting field of this polynomial.
In K, let $F=\left\{a \in K / a^{p^{m}}=a\right\}$
Clearly the elements of F are the roots of $x^{p^{m}}-x$.

We know "(cor 2to L5.5.2) If F is a field of characteristic $\mathrm{p} \neq 0$, then the polynomial $x^{\mathrm{p}^{\mathrm{n}}}{ }_{-x} \in \mathrm{~F}[\mathrm{x}]$, for $\mathrm{n} \geq 1$, has distinct roots."
\therefore The elements of F are distinct roots of $\mathrm{x}^{\mathrm{p}^{\mathrm{m}}}-\mathrm{x}$.
$\Rightarrow F$ has p^{m} elements.

To Prove

F is a field.
Let $a, b \in F$
$\Rightarrow \mathrm{a}^{\mathrm{p}^{\mathrm{m}}}=\mathrm{a} \& b^{\mathrm{p}^{\mathrm{m}}}=\mathrm{b}$
$\therefore(\mathrm{ab})^{\mathrm{p}}=\mathrm{a}^{\mathrm{p}}{ }^{\mathrm{m}} b^{\mathrm{p}^{\mathrm{m}}}=\mathrm{ab}$
$\Rightarrow a b \in F$

$$
\begin{gathered}
\text { Also }(\mathrm{a} \pm \mathrm{b})^{\mathrm{p}^{\mathrm{m}}}=\mathrm{a}^{\mathrm{p}^{\mathrm{m}}} \pm b^{\mathrm{p}^{\mathrm{m}}}(\because \text { the char is } \mathrm{p}) \\
=\mathrm{a} \pm \mathrm{b}
\end{gathered}
$$

$$
\Rightarrow \mathrm{a} \pm \mathrm{b} \in \mathrm{~F}
$$

$$
\therefore \mathrm{ab}, \mathrm{a}-\mathrm{b} \in \mathrm{~F} \forall \mathrm{a}, \mathrm{~b} \in \mathrm{~F}
$$

$\therefore \mathrm{F}$ is a subfield of $\mathrm{K} \&$ so is a field.
\therefore We have exhibited the field F having p^{m} elements.

T.7.1.1

For every prime number $\mathrm{p} \&$ every positive integer $\mathrm{m} \exists$ a unique field having p^{m} elements.

Proof: \quad Follows from L7.1.3 \& L 7.1.4
Note; The unique field having p^{m} elements is called the Galois field G F $\left[p^{m}\right]$

