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5 .7 Solvability by Radicals

Given x®+3x+4 over the field of rational numbers Fy,
the roots are (-3 + V-7 )/2
. The field Fo(~7 i) is the spliting field of X* + 3x+ 4 over F,.

FO(C{)) = F() (\/b2 —4ac)

ie., 3 y =-7inF,such that the extension field Fy () where »®= 5,

( w*=b*—4ac = 9-16 = -7)is such that it contains all the roots of x*+3x+4

From a slightly different point of view, given the general quadratic
polynomial p(x) = x*+a;x + a, over F , we can consider it as a particular polynomial
over the field F (a;,a,) of rational functions in a;,a, over F ; in the extension
obtained by adjoining o to F(a;,a,) where
w’= a,’—4a, <F (a;,a) , we find all the roots of p(x).

(b*—4ac in X*+bx+c)



-, There is a formula which expresses the roots
of p(x) in terms of a;a, and square roots of rational functions of these.

Similarly for cubic polynomials formulas are available to express roots in terms of
co-efficients and square roots and cube roots of co-efficients. Consider X*+ a;x’ +a, X +
a3 .Adjoin a certain square root & then a cube rootto F (a;,a,,as) , we reach
a field in which p(x) has its roots.

For 4™ degree polynomials also, we can express the roots in terms of
combinations of radicals ( surds) of rational functions of the co-efficients.

For polynomials of degree 5 & higher, no such universal radical formula
can be given, for we shall provethatit is impossible to express their

roots , in general, in this way.



Definition: Given a field F & a polynomial p(X) € F[x], we

say that p(x) is solvable by radicals over F

if we can find a finite sequence of fields

Fi=F(wy), Fo=F1 (wy) = F(wygwyp), ---,

Fe=Fra (Wy) = F(wy,Wo, ..., Wy) S.t.

wWi's e FWo's € Fi..., Wik € Fya s.t. the roots of p(x) all lie in Fy .(as in n=2,

w? = v=—7eF, the field of rational numbers)

Note: Difference between 1) splitting field & 2)solvability.
1) existence of fields in which roots exist.
2) solving exactly, i. e. roots are expressed in terms of co- efficients
1.e. Formulae for roots are given in terms of radicals of rational function of

co-efficients .



Note: If K is splitting field of p(x) over F, then p(x) is solvable by radicals over
F if we canfind a sequence of fields as above suchthat KC F
Remark:

If such an F, can be found, we can ,without loss of generality , assume it to be
a normal extensionof F. (By the general polynomial of degree n over F,

p(x)= x"+axX" +...+a, , we mean the following:

Let F(a;,...,a,) be the field of rational functions, in nvariables a,...,a, over

F & consider the particular polynomial p(x) = X"+a,x""+...+a, over the field F( ay,...,an).
We say that it is solvable by radicals if it is solvable by radicals over F(ay,...,a,)
This really expresses the intuitive idea of “finding a formula >* for the roots of p(x)
involving combination of m™ roots, for various m’s , of rational functionsin a, ...
,an. For n=2,3,4, this can always be done.

For n>5, Abel proved that this cannot be done.



In fact, we shall give a criterion for this in terms of the Galois group of the

polynomial. But first we must develop a few purely group theoretical results.

Definition: A group G is solvable if we can find a finite chain of subgroups

G=Ny,oN, >N, >...oN, =(e), where each N; is a normal subgroup of N;.; and

such that every factor group N;../N; is abelian.

B

Result 1  Every abelian group is solvable.

Proof:  Take Ny=G&N;=(e)



.3 a finite chain of subgroups G=Ny > N, = (e).
where N, is a normal subgroup of Ng
(gng™=geg”™ - Ni=(e)
=gg'=e eN,, VgeG VeeN,)
& No/N;=G/(e) ~G is abelian.
.. Every abelian group is solvable.
Result 2 : S;is solvable.
Proof: S; ={ (1), (1,2), (2,3), (3,1), (1,2,3),(1,3,2)}

As={(1),(123),(132)}



Take No=S3, Ni=A;, Ngz{(l)}
Then 3 a finite chain of subgroups

S,=N, 2N, 2N, =(¢),(is a solvable series for S).

We know that A is @ normal subgroup of Ps=5
. Ny Is a normal subgroup of Ng
Also (1) =N is a normal group of N,

The quotient groups No/N; &N1/N, are of orders 2&3 respectively.



We know that “all groups of order 2&3 are abelian”
». No/N; &Ny/N,are abelian
+. 3 afinite chain of subgroups S, =N, >N, >N, =(¢),
such that No/N; &N4/N, are abelian .
Hence S3is a solvahle.
Show that S, is solvable.
Proof:
Let A, be the alternating group of permutations of degree 4.

A, is a normal subgroup of P4=S,



LetVy={e (12) (34),(13)(24) (14) (23)}
Clearly V4 is a normal subgroup of A,
Take No:S4, Ni=As,N,=V,, & N3:(e)

Claim: S, =N, >N, >N, o N, =(e) Is a solvable series for P,=S,.Clearly (e) is

a normal subgroup of N,.
The quotient groups S4/N1,Ni/N,, &N,/N; are of orders 2,3 &4 respectively.

We know that “all groups of order up to order 5 are abelian”

- SaIN1,N1/Ny, &N,o/N;3 are abelian



-. 3 a finite chain of subgroups of S, =N, o N, o N, o N, = (e) such that

s.t No/N1, N1/N», &N»>/N3 are abelian

-~ Itis a solvable series.

Hence S, is solvable.

Note:For n>5 we show in T 5.7.1 below that S, is not solvable.

Alternative description for solvability.

Definition: Given the group G and elements a,b in G, then the commutator of

a&Db is the element a*b™ab.

The commutator subgroup, G* ,of G is the subgroup of G generated by all the

commutators in G. i.e., G'is generated by{ a*b™ab/a,b «G}



Note: 1. We can also define the commutator of a&b to be aba *b™. In this case,
G’ is generated by {aba™’ b/ a, b < G}.

2. The commutator subgroup G* of a group is the smallest subgroup of G

containing the set of all commutators in G.
Result: Let G* be the commutator subgroup of a group
Then G is abelian iff G* = (e).
Theorem: Let G be a group & G* be the commutator subgroup of G. Then
(i) G'is normal in G.
(i)G / G' is abelian
(iii) If N is any normal subgroup of G, then G / N is abelian iff G'cN

(iv) If H is a subgroup of G, such that Ho G , H is a normal subgroup of G.



Proof: LetU = {aha’b™/abeG}.If G is the commutator subgroup of G,
then G' i the smallest subgroup of G containing U.
() Let xeG&ceG
Now xcx™ =(xex™)c™c
=(xexch)e
Now x,ceG=xcx' ¢ eG

s xex'cteG &e G

=>xex ch)ceG

= XX eG'VeeG
XeG

- Gis normal in G.



() a,beG=Ga,GbeG/G
We have ab a*bleu
=aba'b'eG (~UcG)
— (ab) (ba)* € G

= G (ab) = G (ba)
= (G'3)(G'b) = (G'b)(G a)

= G/G'Is abelian



(iii)Let N be any normal subgroup of G.
Leta,b eG =Na,Nb eG/N

Let G/N be abelian.

Then (Na) (Nb) = (Nb) (Na)

— Nab = Nba

— (ab)(ba) e N

—aba'bt'eN=UcN

(--aba™b™ is any element of U)

~.N is the sub group of G containing U.

But G'is the smallest subgroup of G containing U.



Conversely, let G =N

Now G is the Smallest subgroup of G Containing U & G <N

= UcG'cN

= UcN

—=aba" b*eN

= (ab) (ba) ™ e N

= Nab = Nba

= (Na) (Nb) = (Nb) (Na)

— G/N Is abelian



(iv) Given
H is a subgroup of G such that H o G
LetgeG & heH
Then gh g™ =(gh g™*) (h™h)
=(gh g7h™)h
Now ghg*h™* eG
=ghg'h'eH
soghgth?eH&heH
=(@h g h)heH

=ghg'eHVQgeG, heH

..H is the normal sub group of G.



Note: G is a group in its own right, so we can speak of its commutator subgroup G
— (Gl)l

i.e., G@ is the subgroup of G generated by all elements
a'bt @)t (Y or @Y (bY)tatbt where albt e G’
We know G' is normal in G.

- (GY' =G® is normal in G~ It can be easily proved that G® is normal in G as

well.

Continuing in this way we can define higher commutator subgroup G™ by G™
— (G(m-l))!



This G™ is called m" commutator sub group or m"™ derived subgroup of G. It

is easy to see that G™ is a normal subgroup of G.
We know G/G is abelian.
- G™1 6™ s abelian.

(In terms of higher commutator subgroups of a group G we have a very succinct

(important) criterion for solvability of G.)
L5.7.1 Agroup G is solvable it G = (¢) for some integer k.

Proof:  The ‘if’ part

Let G¥= () for some integer k.
To Prove G is solvable.

LetN,= G, Ny =G N, =G N, =G¥= (e)



Then G=N,oN, 2N, 2..2oN, =(¢)

we know G* is a normal subgroup of G.

- GY =(G"Y is a normal sub group of G for each i.
= N; is a normal subgroup of N., for each i.

(i-1) (i-1)
Also Niy _ G __ — G_ :
N G(l) (G(l—l))

we know that G / G is abelian

GG

W is abelian

— N;.1/ N;j is abelian for each i.



~. 3 a finite chain of subgroups.

G=N, 2N, oN, o..oN, =(e), where each N;is a normal subgroup of N;.; and such

that every factor group Ni../ N; is abelian.
.G is solvable.

‘only if* part

Let G be a solvable Group.

.3 a finite chain of subgroups G=NooN, 2N, 2..2oN, =(e),

where each N;j is a normal subgroup of N;_; and such that every factor group Nj.1/ N;j is

abelian.



we know “If N is normal subgroup of G, then G/N is abelian iff

Gl cN”
So N4/ N; isabelian =N ;= N;
-.Ni> Ni -1 for each i. Hence
N,oN, =G

N, o N1' S>(G) =G?
N, >N, o(G?) =G®

N, 5G®

N, oG®



Forsome k,(e)=N, oG ¥
But () = G ® always.
Hence G © = (e).

Corollary: If G is a solvable group and if G is a homomorphic image of G,
then G is solvable.
Proof : G is a homomorphic image of G
—(G)™is the image of G
Now G is solvable =G ® = (e) for some k.
—=(G) ™= (e) for the same k.

(-~ a homomorphism maps identity to identity)

~. G is solvable.



INext lemma is the key step in proving that S, , n > 5is not solvable).

L5.7.2

Let G=S_ where n> 5;then G for
k=1,2,...,contains every 3-cycle of S |

Proof: We know “If N is a normal subgroup of a group G, then the commutator subgroup N

of N is also normal subgroup of G.”
Claim: If N is a normal subgroup of G =S,, where n > 5,
which contains every 3- cycle in S, ,
then N" must also contain every 3- cycle.
Supposea=(123),b=(145)areinN.

Thena'btab=(321)(541)(123)(145)=(142)



Also a*btab €N (as a commutator of elements of N)
= (142)eN =n"(142) 1N vies, (- N isnormal)
Now let (i,i,,i3) be any 3- cycle in S,
where iy,1,i3 are any 3 distinct integers between 1&n.
Choose 11 in S, Suchthat 11 (1) =i, 1(4) =i, & 1 (2) = ia.

Then 1™ (14 2) 1= (iy,inis) (i goesto 1 under 1!
1 goes to 4 under (1 4 2)
4 goes to i, under 11

Soi; goestoi,under m™ (14 2) 11.

Similarly i, goes to is, i3 goes to iy ).



~ (ininis) <N

— N contains all 3-cycles.

Let N=0G.

G is normal in G & contains all 3- cycles

— G contains all 3- cycles.

Similarly G is normal in G

— (G" contains all 3- cycles.

Similarly G® is normal in G.

= (G?*= G® contains all 3- cycles.

Continuing in this way, we conclude that G ® contains all 3- cycles for arbitrary k.

(A direct consequence of this lemma is the interesting group theoretic result)



T5.7.1 S;isnotsolvable for n>5
Proof 1f G =S, G contains all 3-cycles in S, for every k where n>5
-G 2 (e) forany k.
=G =S5,, n>5, 1s not solvable.

(Interrelating the solvability by radicals of p(x) with the solvability of the Galois
roup of p(x). But first we need a result about the Galois group of a certain type of

olynomial.)



L 5.7.3 Suppose that the field F contains all the n™ roots of unity (for some particular n)
& suppose that a=0 in F. Let x"-a € F[x] & let K be its splitting field over F.

Then (1) K = F(u) where u is any root of x"-a.
(2) The Galois group of x"-a over F is abelian.
Proof: F has all n" roots (2™ r=0ton-1) of unity.
— F has &£=¢2ll/n
Note £"=1but &" =1 for0<m<n.

Let u e K be any root of x"-a.

= u, &, &2,....,"u are all the roots of x"-a.



These roots are distinct, for,

Fu=&u with 0<i<j<n

= (E'-¢)u=0
—E-gl=0 (-u=0)
=g =

= &M =1=2<t00<j-1<n
. EeF=EcF(u)
~allof uéu,.., " u are in F(u)
= F(u) splits x"-a
Also no proper subfield of F (u) which contains F also contains u.

— No proper subfield of F (u) can split x"-a.



~.F(u) is the splitting field of x"-a.
Hence K = F (u)
To Prove G (K, F) is abelian.
Let 0,7 e G(K,F)
= o &7 are automorphisms of K = F(u) leaving every element of F fixed.
= o(u)&z(u)are roots of x"—a (- u is a root of x"-a)

= o(u)=&'u&7(u) = &u for some i& j.

- o1(u) = o(Elu) = Elo(u) (& eF)
=&lglu=¢"u.

I Yto(u) =&,

~.ot(u) =to(u) VU e K.

not=1wVo,te GK,F)

= The Galois group G(K,F) is abelian.



Note:From the Lemma, if F has all n" roots of unity,
then adjoining one root of x"™-ato F, where a  F,
gives us the splitting field of x™-a &
K =F(u) I.e., the splitting field is a normal extension of F.
T 5.7.2 Let F be a field which contains all "™ roots of unity for every integer n.
If p(x) e F[x] is solvable by radicals over F,
then the Galois group ,over F,
of p(x) is a solvable group.
Proof.
Let K be the splitting field of p(x) over F
-.the Galois group of p(x) over F is G(K,F).

Given: p(X) is solvable by radicals



= 3 asequence of fields
FcF=Kw,)cF,=FK(Ww,)c..ck=F_(w,)

(by note of L.5.7.3) Without Loss of Generality, assume that F, is normal extension of F.
Also F is normal extension of each F;.
(Again by note) Each F;is a normal extension of Fi.,, ¢ Since Fy is normal over
Fiy, DyFTGT (T 5.6.6)

G (Fy, F;) is a normal sub group in G (Fy, Fi.)

Consider the chain G (Fy, F) oG (F, F1) o G (F, Fy) 2.0
G (Fy, Fet) 2(€).---> (1)

Note that each subgroup in this chain is a normal subgroup in the one

proceeding it.



By FTG T! G(Fi,Fi-l) ~ G(Fk,Fi_]_) / G(Fk1 FI)
(L 5.7.3) we know The Galois group G (r.%_,) is abelian

= each quotient group G (Fy, Fi.1) / G(F,Fi) of the chain (1) is abelian

= G (r..F) is solvable.

Now K < Fx & K is a normal extension of F(being a splitting field)
= G(F ,K) is a normal subgroup of G (FxF) &
G(K,F) ~G(F¢,F) I G(F,K) (byFTGT)
= G (K,F) is a homomorphic image of G(F«F)
= G (K,F) is solvable
(~- G(Fg ,F) is solvable &
homomorphic image of a solvable group is solvable )

-. The Galois group of p(x) over F is solvable.



Note: 1The converse of above theorem is true
2.Theorem & its converse are true even if F does not contain roots of unity.

Meaning of the general polynomial of degree n.

Let F(ay,....,a,) be the field of rational functions in the n invariables a,,...,a, over
F.
p(x) = X"+ a; X" +...+a, over the field F (ay, a,,...,a,) is called the general polynomial
of degree n over the field F.
P(x) is solvable by radicals if it is solvable by radicals over F(ay, a,,...,an).
It is easy to show that the Galois group of

p(x) = X"+ a; X +...+a, over F(a,...,a)) is Sn.



T5.7.3 (Abel’s theorem) The general polynomial of degree n > 5 is not solvable by

radicals.
Proof. (T 5.6.3) If F(ay,...,a,) Is the field of rational functions in the n variables a,...,a, then
the Galois group of

o(t) = ag+ yt"™ ... 48, OVer F(ay, ay,....8) IS Sp.

(T 5.7.1) S, Is not a solvable group whenn > 5.

(T5.7.2) ..p(t) Is not solvable by radicals over F(a;,...,a,) Whenn > 5,



7.1 finite fields

L 7.1.1 LetF be afinite field with g elements &suppose that F = K where K is also a finite

field. Then K has " elements where n = [K: F]
Proof; F « K& Kis finite
= K is a finite dimension vector space over F
= [K:F]=n
Let a basis of K over F be vi,vs,..., V,

Then every element in K has a unique representation in the form «, vi+a, vy+..+ay vy

... Number of elements in K= the number of o, v,+a, v, +..+a, v, asthe o, a,,..a,

range over F&|F|=q

- |K| = g" since each co-efficient can have q values.



Corollary:1

Let F be a finite field. Then F has p™ elements where the prime number p is the
characteristic of F
Proof:
F has a finite number of elements
S fl=0wheref=|F|  [°© - (if G s finite)
= F has characteristic p for some prime number p

= F contains a field F,=J;. Note F has p elements

= Fhas p™ elements where m = [F: Fo] (by L 7.1.1)



Corollary: 2 If the finite field F has p™ elements, then every a < F satisfies P =a

Proof; If a = 0 then clearlya”" =a

On the other hand, the non zero elements of F form a group under multiplication

m
of order p 1

napl=1va=0inF ( a%®=e)(if Gis finite.)

pm

= a =a

(From corollary 2 we can easily pass to )



L.7.1.2

If the finite field F has p™ elements, then the polynomial P _x in F[x] factors in F[x] as

-x = H(X—/I)

AeF

m
<P

Proof:
we know that (L5.3.2) “A polynomial of degree n over a field can have atmost n roots

in any extension field.”
. xP" _x has at most p™ roots in F.
We know that (cor 2toL7.1.1) If the finite field F has p™elements, then every a <F satisfies
= a"
- all the p™ elements of F are roots of xP —x.
Also we know that (cortoL5.3.1) Ifa €K isaroot of p(x) e F[x], where Fc K, then in K[x],
(x-a) | p(x).”

~. Foreach A eF,(x-1)| P

—-X= H(X—ﬂ)

AeF



Corollary: |

If the field F has p" elements, then F is the splitting field of the polynomial &y
Proof;
ByL7.12, &y certainly splits in F. However, it cannot split in any smaller field

for that field would have to have all the roots of this polynomial & so would have to have at

least o™ elements. Thus F is the splitting field ofx®" —x.



L /.13

Any two finite fields having the same number of elements are

isomorphic
Proof:

Let these fields have p™elements.
Then (by the above corollary) they are both splitting fields of the polynomial
P _x overJ,.
= The fields are isomorphic (- any 2 splitting fields are isomorphic)
L714

For every prime number p and every positive integer m, 3 a field
having p™ elements.

Proof
Consider the polynomial P in J, [X], the ring of polynomials. in
x over J, the field of integers mod p.
Let K be the splitting field of this polynomial.
INK, let Fefac kP —ay

Clearly the elements of F are the roots of xP" _x.



We know “(cor 2to L5.5.2) If F is a field of characteristic p = 0, then the polynomial
P _xe F[x], for n>1,has distinct roots.”

- The elements of F are distinct roots of <" -x.
= F has p" elements.
To Prove
F is a field.
Letabe F

m m
=a" =a&b? =D
m m m
@)’ =a" P =ab

=abeF



—a+bh
—atbeF
~ab,a-beFvabekF
~.Fis asubfield of K & so is a field.

~.We have exhibited the field F having p™ elements.

I.71.1

For every prime number p & every positive integer m 3 a unique field having p"
elements.
Proof: Follows fromL7.1.3 & L 7.1.4

Note; The unique field having p™ elements is called the Galois field G F [p™]



