Solvability by Radicals Prepared by

Dr. A.Lourdusamy M.Sc., M.Phil., B.Ed., Ph.D.

Reader in mathematics,

St. Xavier's College (Autonomous),

Palayamkottai-627002.

Ref: Topics in Algebra By I.N. Herstein

<u>5.7 Solvability by Radicals</u>

Given $x^2 + 3x + 4$ over the field of rational numbers F_0 , the roots are $(-3 \pm \sqrt{-7})/2$

 $\therefore \text{ The field } F_{o}(\sqrt{7} \text{ i }) \text{ is the splitting field of } X^{2} + 3x + 4 \text{ over } F_{o}.$ $\left| F_{0}(\omega) = F_{0}(\sqrt{b^{2} - 4ac}) \right|$

<u>i.e.</u>, $\exists \gamma = -7$ in F_0 such that the extension field $F_0(\omega)$ where $\omega^2 = \gamma$, ($\omega^2 = b^2 - 4ac = 9 - 16 = -7$) is such that it contains all the roots of $x^2 + 3x + 4$.

From a slightly different point of view, given the general quadratic polynomial $p(x) = x^2 + a_1x + a_2$ over F, we can consider it as a particular polynomial over the field F (a_1, a_2) of rational functions in a_1, a_2 over F; in the extension obtained by adjoining ω to F (a_1, a_2) where $\omega^2 = a_1^2 - 4a_2 \in F(a_1, a_2)$, we find all the roots of p(x). $(b^2 - 4ac$ in $x^2 + bx + c)$ \therefore There is a formula which expresses the roots of p(x) in terms of a₁,a₂ and square roots of rational functions of these.

Similarly for cubic polynomials formulas are available to express roots in terms of co-efficients and square roots and cube roots of co-efficients. Consider $x^3 + a_1x^2 + a_2x + a_3$. Adjoin a certain square root & then a cube root to F (a_1 , a_2 , a_3), we reach a field in which p(x) has its roots.

For 4th degree polynomials also, we can express the roots in terms of combinations of radicals (surds) of rational functions of the co-efficients.

For polynomials of degree 5 & higher, no such universal radical formula can be given, for we shall prove that it is <u>impossible</u> to express their roots, in general, in this way.

Definition: Given a field F & a polynomial $p(x) \in F[x]$, we

say that p(x) is solvable by radicals over F if we can find a finite sequence of fields $F_1 = F(w_1), F_2 = F_1(w_2) = F(w_1, w_2), \dots,$ $F_k = F_{k-1}(w_k) = F(w_1, w_2, \dots, w_k) \quad \text{s.t.}$ $w_1^r \in F, w_2^r \in F_1, \dots, w_k^r \in F_{k-1} \text{ s.t.}$ the roots of p(x) all lie in F_k .(as in n = 2, $w^2 = v = -7 \in F$, the field of rational numbers)

Note: Difference between 1) splitting field & 2)solvability.

1) existence of fields in which roots exist.

2) solving exactly, i. e. roots are expressed in terms of co-efficients

.i.e. Formulae for roots are given in terms of radicals of rational function of co-efficients .

<u>Note:</u> If K is splitting field of p(x) over F, then p(x) is solvable by radicals over F if we can find a sequence of fields as above such that KC F_k

Remark:

If such an F_k can be found, we can ,without loss of generality, assume it to be a normal extension of F. (By the general polynomial of degree n over F,

 $p(x) = \ x^n + a_1 x^{n\text{-}1} + \ldots + a_n$, we mean the following:

Let $F(a_1, ..., a_n)$ be the field of rational functions, in n variables $a_1,...,a_n$ over F & consider the particular polynomial $p(x) = x^n + a_1 x^{n-1} + ... + a_n$ over the field $F(a_1,...,a_n)$. We say that it is solvable by radicals if it is solvable by radicals over $F(a_1,...,a_n)$ This really expresses the intuitive idea of "finding a formula" for the roots of p(x) involving combination of m^{th} roots, for various m's , of rational functions in $a_1, ..., a_n$. a_n . For n = 2, 3, 4, this can always be done.

For $n \ge 5$, Abel proved that this cannot be done.

In fact, we shall give a criterion for this in terms of the Galois group of the polynomial. But first we must develop a few purely group theoretical results.

<u>Definition</u>: A group G is solvable if we can find a finite chain of subgroups $G = N_0 \supset N_1 \supset N_2 \supset ... \supset N_k = (e)$, where each N_i is a normal subgroup of N_{i-1} and such that every factor group N_{i-1}/N_i is abelian.

Result 1 Every abelian group is solvable.

<u>Proof</u>: Take $N_0=G\&N_1=(e)$

 $\therefore \exists$ a <u>finite</u> chain of subgroups $G=N_0 \supset N_1 = (e)$.

where N_1 is a normal subgroup of N_0

$$(\operatorname{gng}^{-1}=\operatorname{geg}^{-1}$$
 $:: N_1=(e)$

$$= gg^{-1} = e \in N_1, \forall g \in G \forall e \in N_1)$$

& $N_0/N_1 = G/(e) \approx G$ is abelian.

 \therefore Every abelian group is solvable.

<u>Result 2 :</u> S_3 is solvable.

<u>Proof:</u> $S_3 = \{ (1), (1,2), (2,3), (3,1), (1,2,3), (1,3,2) \}$

 $A_3 = \{(1), (1 \ 2 \ 3), (1 \ 3 \ 2)\}$

Take $N_0=S_3$, $N_1=A_3$, $N_2=\{(1)\}$

Then \exists a <u>finite</u> chain of subgroups

 $S_3 = N_0 \supset N_1 \supset N_2 = (e)$, (is a solvable series for S_3).

We know that A_3 is a normal subgroup of $P_3=S_3$

 \therefore N₁ is a normal subgroup of N₀

Also (1) = N_2 is a normal group of N_1

The quotient groups $N_0/N_1 \& N_1/N_2$ are of orders 2&3 respectively.

We know that "all groups of order 2&3 are abelian"

 \therefore N₀/N₁ &N₁/N₂ are abelian

 $\therefore \exists a \text{ <u>finite</u> chain of subgroups } S_3 = N_0 \supset N_1 \supset N_2 = (e),$

such that $N_0/N_1 \& N_1/N_2$ are abelian.

Hence S_3 is a solvable.

Show that S₄ is solvable.

Proof:

Let A₄ be the alternating group of permutations of degree 4.

 A_4 is a normal subgroup of $P_4=S_4$

Let $V_4 = \{e, (1 \ 2) \ (3 \ 4), (1 \ 3) \ (2 \ 4), (1 \ 4) \ (2 \ 3)\}$

Clearly V_4 is a normal subgroup of A_4 .

Take $N_0=S_4$, $N_1=A_4$, $N_2=V_4$, & $N_3=(e)$

Claim: $S_4 = N_0 \supset N_1 \supset N_2 \supset N_3 = (e)$ is a solvable series for $P_4 = S_4$. Clearly (e) is a normal subgroup of N_2 .

The quotient groups S_4/N_1 , N_1/N_2 , $\&N_2/N_3$ are of orders 2,3 &4 respectively.

We know that "all groups of order up to order 5 are abelian"

 \therefore S₄/N₁,N₁/N₂, &N₂/N₃ are abelian

 \therefore \exists a finite chain of subgroups of $S_4 = N_0 \supset N_1 \supset N_2 \supset N_3 = (e)$ such that

s.t N₀/N₁, N₁/N₂, &N₂/N₃ are abelian

 \therefore It is a solvable series.

Hence S_4 is solvable.

<u>*Note*</u>: For $n \ge 5$ we show in T 5.7.1 below that S_n is not solvable.

Alternative description for solvability.

<u>**Definition**</u>: Given the group G and elements a,b in G, then the commutator of a&b is the element $a^{-1}b^{-1}ab$.

The commutator subgroup, G^1 , of G is the subgroup of G generated by all the commutators in G. i.e., G^1 is generated by $\{a^{-1}b^{-1}ab/a, b \in G\}$

<u>Note:</u> 1. We can also define the commutator of a&b to be $aba^{-1}b^{-1}$. In this case, G^{1} is generated by $\{aba^{-1} b^{-1} / a, b \in G\}$.

2. The commutator subgroup G^1 of a group is the smallest subgroup of G containing the set of all commutators in G.

<u>Result</u>: Let G^1 be the commutator subgroup of a group

Then G is abelian iff $G^1 = (e)$.

Theorem: Let G be a group & G^1 be the commutator subgroup of G. Then

(i) G^1 is normal in G.

(ii) G / G^1 is abelian

(iii) If N is any normal subgroup of G, then G / N is abelian iff $G^1 \subseteq N$

(iv) If H is a subgroup of G, such that $H \supseteq G'$, H is a normal subgroup of G.

<u>Proof:</u> Let $U = \{aba^{-1}b^{-1}/a, b \in G\}$. If G^1 is the commutator subgroup of G,

then G¹ is the smallest subgroup of G containing U.

(i) Let $x \in G \& c \in G'$

Now $x c x^{-1} = (x c x^{-1}) c^{-1} c$

 $=(x c x^{-1} c^{-1})c$

Now $x, c \in G \Rightarrow x c x^{-1} c^{-1} \in G'$

 $\therefore x c x^{-1} c^{-1} \in G' \& c \in G'$ $\Rightarrow (x c x^{-1} c^{-1}) c \in G'$ $\Rightarrow x c x^{-1} \in G^1 \forall c \in G'$ $x \in G$

 \therefore G¹ is normal in G.

(ii)
$$a, b \in G \Rightarrow G'a, G'b \in G/G^1$$

We have $ab \ a^{-1} \ b^{-1} \in U$
 $\Rightarrow ab \ a^{-1} \ b^{-1} \in G' \quad (\because U \subset G')$
 $\Rightarrow (ab) \ (ba)^{-1} \in G'$
 $\Rightarrow G'(ab) = G'(ba)$
 $\Rightarrow (G'a)(G'b) = (G'b)(G'a)$

 \Rightarrow G/G' is abelian

(iii)Let N be any normal subgroup of G.

Let $a, b \in G \Rightarrow Na, Nb \in G/N$

Let G/N be abelian.

Then (Na) (Nb) = (Nb) (Na)

$$\Rightarrow Nab = Nba$$
$$\Rightarrow (ab)(ba)^{-1} \in N$$
$$\Rightarrow aba^{-1}b^{-1} \in N \Rightarrow U \subseteq N$$

 $(:: aba^{-1}b^{-1} \text{ is any element of } U)$

 \therefore N is the sub group of G containing U.

But G^1 is the smallest subgroup of G containing U. $\Rightarrow N \supseteq G^{'}$

Conversely, let $G' \subseteq N$

Now G' is the Smallest subgroup of G Containing U & $G' \subseteq N$

 $\Rightarrow U \subseteq G^{1} \subseteq N$ $\Rightarrow U \subseteq N$ $\Rightarrow aba^{-1} b^{-1} \in N$ $\Rightarrow (ab) (ba)^{-1} \in N$ $\Rightarrow Nab = Nba$ $\Rightarrow (Na) (Nb) = (Nb) (Na)$

 \Rightarrow G/N is abelian

(iv) Given

H is a subgroup of G such that $H \supseteq G^1$ Let $g \in G \& h \in H$ Then gh $g^{-1} = (gh g^{-1}) (h^{-1}h)$ $=(gh g^{-1}h^{-1})h$ Now gh $g^{-1}h^{-1} \in G'$ \Rightarrow gh g⁻¹ h⁻¹ \in H $\therefore gh g^{-1} h^{-1} \in H \& h \in H$ \Rightarrow (gh g⁻¹ h⁻¹) h \in H \Rightarrow gh g⁻¹ \in H \forall g \in G, h \in H

 \therefore H is the normal sub group of G.

<u>Note:</u> G' is a group in its own right, so we can speak of its commutator subgroup $G^{(2)} = (G^1)^1$

i.e., $G^{(2)}$ is the subgroup of G generated by all elements $a^{1}b^{1}(a^{1})^{-1}(b^{1})^{-1}$ or $(a^{1})^{-1}(b^{1})^{-1}a^{1}b^{1}$ where $a^{1}, b^{1} \in G$

We know G^1 is normal in G.

 \therefore $(G^1)^1 = G^{(2)}$ is normal in G^2 . It can be easily proved that $G^{(2)}$ is normal in G as well.

Continuing in this way we can define higher commutator subgroup $G^{(m)}$ by $G^{(m)} = (G^{(m-1)})!$

This $G^{(m)}$ is called mth commutator sub group or mth derived subgroup of G. It is easy to see that $G^{(m)}$ is a normal subgroup of G.

We know G/G' is abelian.

 $\mathop{:}{:} G^{\,(\text{m-1})}/\,G^{\,(\text{m})}$ is abelian.

(In terms of higher commutator subgroups of a group G we have a very succinct (important) criterion for solvability of G.)

<u>L 5.7.1</u> A group G is solvable it $G^{(k)} = (e)$ for some integer k.

<u>Proof</u>: The 'if' part

Let $G^{(k)} = (e)$ for some integer k.

To Prove G is solvable.

Let $N_0 = G$, $N_1 = G^1$, $N_2 = G^{(2)}$, ..., $N_k = G^{(k)} = (e)$

Then
$$G = N_0 \supseteq N_1 \supseteq N_2 \supseteq ... \supseteq N_k = (e)$$

we know G^1 is a normal subgroup of G.

 \therefore G⁽ⁱ⁾ = (G⁽ⁱ⁻¹⁾)' is a normal sub group of G⁽ⁱ⁻¹⁾ for each i.

 \Rightarrow N_i is a normal subgroup of N_{i-1} for each i.

Also
$$\frac{N_{i-1}}{N_i} = \frac{G^{(i-1)}}{G^{(i)}} = \frac{G^{(i-1)}}{(G^{(i-1)})'}$$

we know that G / G' is abelian

$$\hdots \frac{G^{(i-l)}}{(G^{(i-l)})^l}$$
 is abelian

 \Rightarrow N_{i-1} / N_i is abelian for each i.

 \therefore \exists a finite chain of subgroups.

 $G = N_o \supseteq N_1 \supseteq N_2 \supseteq ... \supseteq N_k = (e)$, where each N_i is a normal subgroup of N_{i-1} and such that every factor group N_{i-1} / N_i is abelian.

 \therefore G is solvable.

<u>'only if'</u> part

Let G be a solvable Group.

 \therefore \exists a finite chain of subgroups $G = No \supseteq N_1 \supseteq N_2 \supseteq ... \supseteq N_k = (e)$,

where each N_i is a normal subgroup of N_{i-1} and such that every factor group N_{i-1} / N_i is abelian.

we know "If N is normal subgroup of G, then G/N is abelian iff

 $\mathbf{G}^1 \subset N$ "

So
$$N_{i-1} / N_i$$
 is abelian $\Rightarrow N_{i-1}^1 \subset N_i$

 \therefore Ni \supset Ni['] -1 for each i. Hence

$$\begin{split} \mathbf{N}_{1} &\supset \mathbf{N}_{0}^{'} = \mathbf{G}^{'} \\ \mathbf{N}_{2} &\supset \mathbf{N}_{1}^{'} \supseteq (\mathbf{G}^{'})^{1} = \mathbf{G}^{(2)} \\ \mathbf{N}_{3} &\supset \mathbf{N}_{2}^{'} \supset (\mathbf{G}^{(2)})^{1} = \mathbf{G}^{(3)} \\ \cdots & \cdots & \cdots \\ \mathbf{N}_{i} &\supset \mathbf{G}^{(i)} \\ \cdots & \cdots & \cdots \\ \mathbf{N}_{k} &\supset \mathbf{G}^{(k)} \end{split}$$

For some k, (e) = $N_k \supseteq G^{(k)}$ But (e) $\subseteq G^{(k)}$ always. Hence $G^{(k)} = (e)$.

<u>Corollary</u>: If G is a solvable group and if \overline{G} is a homomorphic image of G,

then \overline{G} is solvable.

<u>Proof</u>: \overline{G} is a homomorphic image of G

 $\Rightarrow (\overline{G})^{(k)}$ is the image of $G^{(k)}$

Now G is solvable \Rightarrow G^{(k) =} (e) for some k.

 \Rightarrow (\overline{G})^(k) = (e) for the same k.

(:: a homomorphism maps identity to identity)

 $\therefore \overline{G}$ is solvable.

Next lemma is the key step in proving that S_n , $n \ge 5$ is not solvable).

 $\underline{L 5.7.2} \qquad \begin{array}{c} \text{Let } G = S_n \text{ where } n \ge 5; \text{ then } G^{(k)} \text{ for } \\ k = 1, 2, \dots, \text{ contains every } 3 \text{ - cycle of } S_n \end{array}$

Proof: We know "If N is a normal subgroup of a group G, then the commutator subgroup N of N is also normal subgroup of G."

<u>Claim</u>: If N is a normal subgroup of $G = S_n$ where $n \ge 5$,

```
which contains every 3- cycle in S_n,
```

then N['] must also contain every 3- cycle.

Suppose $a = (1 \ 2 \ 3)$, $b = (1 \ 4 \ 5)$ are in N.

Then $a^{-1}b^{-1}ab = (3\ 2\ 1)\ (5\ 4\ 1)\ (1\ 2\ 3)\ (1\ 4\ 5) = (1\ 4\ 2)$

Also $a^{-1}b^{-1}ab \in N'$ (as a commutator of elements of N) $\Rightarrow (1 4 2) \in N' \Rightarrow \Pi^{-1} (1 4 2) \Pi \in N' \forall \Pi \in S_n (:: N' is normal)$

Now let (i_1, i_2, i_3) be any 3- cycle in S_n

where i_1, i_2, i_3 are any 3 distinct integers between 1&n.

Choose Π in S_n Such that Π (1) = i, Π (4) = i₂ & Π (2) = i₃.

Then Π^{-1} (1 4 2) $\Pi = (i_1, i_2, i_3)$ (i_1 goes to 1 under Π^{-1}

1 goes to 4 under (1 4 2)

4 goes to i_2 under Π

So i_1 goes to i_2 under Π^{-1} (1 4 2) Π .

Similarly i_2 goes to i_3 , i_3 goes to i_1).

 \Rightarrow (i_1 , i_2 , i_3) \in N¹.

 \Rightarrow N['] contains all 3-cycles.

Let N = G.

G is normal in G & contains all 3- cycles

 \Rightarrow G['] contains all 3- cycles.

Similarly G['] is normal in G

 \Rightarrow (G¹)['] contains all 3- cycles.

Similarly $G^{(2)}$ is normal in G.

 \Rightarrow (G²)¹ = G⁽³⁾ contains all 3- cycles.

Continuing in this way, we conclude that G^(K) contains all 3- cycles for arbitrary k.

(A direct consequence of this lemma is the interesting group theoretic result)

<u>T 5.7.1</u> S_n is not solvable for $n \ge 5$

<u>Proof</u> If $G = S_n$, $G^{(K)}$ contains all 3-cycles in S_n for every k where $n \ge 5$

 \Rightarrow G^(k) \neq (e) for any k.

 \Rightarrow G = S_n, n \ge 5, is not solvable.

(Interrelating the solvability by radicals of p(x) with the solvability of the Galois roup of p(x). But first we need a result about the Galois group of a certain type of olynomial.) <u>L 5.7.3</u> Suppose that the field F contains all the nth roots of unity (for some particular n) & suppose that $a \neq 0$ in F. Let x^n - $a \in F[x]$ & let K be its splitting field over F. Then (1) K = F(u) where u is any root of x^n -a.

(2) The Galois group of x^n -a over F is abelian.

<u>Proof</u>: F has all n^{th} roots ($e^{2\Pi i r/n}$, r = 0 to n-1) of unity.

 \Rightarrow F has $\xi = e^{2 \Pi i/n}$

Note $\xi^n = 1$ but $\xi^m \neq 1$ for 0 < m < n.

Let $u \in K$ be any root of x^n -a.

 \Rightarrow u, ξ u, ξ^{2} u,..., ξ^{n-1} u are all the roots of xⁿ-a.

These roots are distinct, for,

$$\xi^{i} \mathbf{u} = \xi^{j} \mathbf{u}$$
 with $0 \le i < j < n$

$$\Rightarrow (\xi^{i} - \xi^{j}) u = 0 \Rightarrow \xi^{i} - \xi^{j} = 0 \quad (\because u \neq 0) \Rightarrow \xi^{i} = \xi^{j} \Rightarrow \xi^{j-i} = 1 \Rightarrow \Leftarrow \text{ to } 0 < j-1 < n$$

$$\therefore \xi \in \mathbf{F} \Longrightarrow \xi \in \mathbf{F}(\mathbf{u})$$

$$\therefore$$
 all of u, ξ u,..., ξ^{n-1} u are in F(u)

 \Rightarrow F(u) splits xⁿ-a

Also no proper subfield of F (u) which contains F also contains u.

 \Rightarrow No proper subfield of F (u) can split xⁿ-a.

 \therefore F(u) is the splitting field of xⁿ-a.

Hence K = F(u)

To Prove G (K, F) is abelian.

Let $\sigma, \tau \in G(K, F)$

 $\Rightarrow \sigma \& \tau$ are <u>a</u>utomorphisms of K = F(u) leaving every element of F fixed.

 $\Rightarrow \sigma(u) \& \tau(u) \text{ are roots of } x^n - a \ (\because u \text{ is a root of } x^n - a)$

$$\Rightarrow \sigma(\mathbf{u}) = \xi^{i} \mathbf{u} \& \tau(\mathbf{u}) = \xi^{j} \mathbf{u} \text{ for some i \& j}$$

$$\therefore \sigma\tau(\mathbf{u}) = \sigma(\xi^{j}\mathbf{u}) = \xi^{j}\sigma(\mathbf{u}) \quad (\because \xi^{j} \in \mathbf{F}))$$

$$= \xi^{j}\xi^{i}\mathbf{u} = \xi^{i+j}\mathbf{u}.$$

$$\blacksquare \ ^{1y}\tau\sigma(\mathbf{u}) = \xi^{i+j}\mathbf{u}.$$

$$\therefore \sigma\tau(\mathbf{u}) = \tau\sigma(\mathbf{u}) \forall \mathbf{u} \in K.$$

$$\therefore \sigma\tau = \tau\sigma \forall \sigma, \tau \in \mathbf{G}(\mathbf{K}, \mathbf{F})$$

 \Rightarrow The Galois group G(K,F) is abelian.

Note: From the Lemma, if F has all nth roots of unity, then adjoining one root of xⁿ-a to F, where $a \in F$, gives us the splitting field of xⁿ-a & K = F(u) i.e., the splitting field is a normal extension of F. T 5.7.2 Let F be a field which contains all nth roots of unity for every integer n. If $p(x) \in F[x]$ is solvable by radicals over F, then the Galois group ,over F,

of p(x) is a solvable group.

Proof.

Let K be the splitting field of p(x) over F

: the Galois group of p(x) over F is G(K,F).

Given: p(x) is solvable by radicals

 $\Rightarrow \exists \text{ a sequence of fields}$ $F \subset F_1 = F(w_1) \subset F_2 = F_1(w_2) \subset ... \subset F_k = F_{k-1}(w_k)$ where $w_1^{r_1} \in F, w_1^{r_2} \in F_1, ..., w_k^{r_k} \in F_{k-1} \& K \subset F_k$

(by note of L.5.7.3) Without Loss of Generality, assume that F_k is normal extension of F. Also F_k is normal extension of each F_i .

(Again by note) Each F_i is a normal extension of F_{i-1} , & since F_k is normal over

 F_{i-1} , by F T G T (T 5.6.6)

G (F_k, F_i) is a normal sub group in G (F_k, F_{i-1})

Consider the chain $G\left(F_{k},F\right)\supset G\left(F_{k},F_{1}\right)\supset$ $G\left(F_{k},F_{2}\right)\supset$... \supset

 $G(F_k, F_{k-1}) \supset (e). \dashrightarrow (1)$

Note that each subgroup in this chain is a normal subgroup in the one

proceeding it.

By F T G T, $G(F_i, F_{i-1}) \approx G(F_k, F_{i-1}) / G(F_k, F_i)$

(L 5.7.3) we know The Galois group G (F_i, F_{i-1}) is abelian

⇒ each quotient group G (F_k , F_{i-1}) / G(F_k , F_i) of the chain (1) is abelian ⇒ G (F_k , F) is solvable.

Now $K \subset F_K$ & K is a normal extension of F(being a splitting field) $\Rightarrow G(F_k, K) \text{ is a normal subgroup of } G(F_k, F) \&$ $G(K,F) \approx G(F_k, F) / G(F_k, K) \quad (\text{ by } F T G T)$ $\Rightarrow G(K,F) \text{ is a homomorphic image of } G(F_k,F)$ $\Rightarrow G(K,F) \text{ is solvable}$

 $(:: G(F_k, F) \text{ is solvable } \&$

homomorphic image of a solvable group is solvable)

 \therefore The Galois group of p(x) over F is solvable.

Note: 1 The converse of above theorem is true

2.Theorem & its converse are true even if F does not contain roots of unity. <u>Meaning of the general polynomial</u> of degree n.

Let $F(a_1,...,a_n)$ be the field of rational functions in the n invariables $a_1,...,a_n$ over F.

 $p(x) = x^n + a_1 x^{n-1} + ... + a_n$ over the field F $(a_1, a_2, ..., a_n)$ is called the general polynomial of degree n over the field F.

P(x) is solvable by radicals if it is solvable by radicals over $F(a_1, a_2,...,a_n)$. It is easy to show that the Galois group of

 $p(x) = x^{n} + a_{1} x^{x-1} + ... + a_{n}$ over $F(a_{1},...,a_{n})$ is S_{n} .

<u>**T 5.7.3**</u> (Abel's theorem) The general polynomial of degree $n \ge 5$ is not solvable by radicals.

<u>Proof.</u> (T 5.6.3) If $F(a_1,...,a_n)$ is the field of rational functions in the n variables $a_1,...,a_n$ then the Galois group of

$$\begin{split} p(t) &= a_0 + a_1 t^{n-1} + \ldots + a_n \text{ over } F(a_1, a_2, \ldots, a_n) \text{ is } S_n. \\ (T 5.7.1) \ S_n \text{ is not a solvable group when } n \geq 5. \\ (T 5.7.2) \ \therefore \ p(t) \text{ is not solvable by radicals over } F(a_1, \ldots, a_n) \text{ when } n \geq 5. \end{split}$$

7.1 finite fields

<u>**L 7.1.1**</u> Let F be a finite field with q elements & suppose that $F \subset K$ where K is also a finite field. Then K has q^n elements where n = [K: F]

<u>Proof</u>; $F \subset K \& K$ is finite

 \Rightarrow K is a finite dimension vector space over F

 \Rightarrow [K: F] = n

Let a basis of K over F be $v_1, v_2, ..., v_n$

Then every element in K has a unique representation in the form $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

where $\alpha_1, \alpha_2, ..., \alpha_n \in F$

 \therefore Number of elements in K= the number of $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$ as the $\alpha_1, \alpha_2, ..., \alpha_n$

range over F & |F| = q

 \therefore $|\mathbf{K}| = q^n$ since each co-efficient can have q values.

Corollary:1

Let F be a finite field. Then F has p^m elements where the prime number p is the characteristic of F

Proof:

F has a finite number of elements

$$\Rightarrow$$
 f 1 = 0 where f = |F| (a^{o(G)} = e) (if G is finite.)

 \Rightarrow F has characteristic p for some prime number p

- \Rightarrow F contains a field $F_0 \approx J_p$. Note F_0 has p elements
- \Rightarrow F has $_{p}$ ^m elements where m = [F: F₀] (by L 7.1.1)

<u>**Corollary: 2</u>** If the finite field F has p^m elements, then every $a \in F$ satisfies $a^{p^m} = a$ <u>**Proof;**</u> If a = 0 then clearly $a^{p^m} = a$ </u>

On the other hand, the non zero elements of F form a group under multiplication

of order
$$p^{m-1}$$

 $\therefore a p^{m-1} = 1 \quad \forall a \neq 0 \text{ in F.} (a^{o(G)} = e) \text{ (if G is finite.)}$
 $\Rightarrow a^{p^{m}} = a$

(From corollary 2 we can easily pass to)

L.7.1.2

If the finite field F has p^m elements, then the polynomial $x^{p^m} - x$ in F[x] factors in F[x] as $x^{p^m} - x = \prod_{\lambda \in F} (x - \lambda)$

Proof:

we know that (L5.3.2) "A polynomial of degree n over a field can have atmost n roots in any extension field."

 $\therefore x^{p^m} - x$ has at most p^m roots in F.

We know that (cor 2toL7.1.1) If the finite field F has p^m elements, then every $a \in F$ satisfies $a^{p^m} = a^{-1}$

 \therefore all the p^m elements of F are roots of $x^{p^m} - x$.

Also we know that (cor to L 5.3.1) If $a \in K$ is a root of $p(x) \in F[x]$, where $F \subset K$, then in K[x], (x-a) | p(x)."

$$\therefore \text{ For each } \lambda \in F, (x-\lambda) \mid x^{p^{m}} - x$$
$$\therefore x^{p^{m}} - x = \prod_{\lambda \in F} (x-\lambda)$$

Corollary; l

If the field F has p^m elements, then F is the splitting field of the polynomial $x^{p^m} - x$ <u>**Proof:</u></u></u>**

By L 7.1.2, $x^{p^m} - x$ certainly splits in F. However, it cannot split in any smaller field for that field would have to have all the roots of this polynomial & so would have to have at least p^m elements. Thus F is the splitting field of $x^{p^m} - x$.

<u>L 7.1.3</u>

Any two finite fields having the same number of elements are isomorphic

<u>Proof</u>:

Let these fields have p^{m} elements.

Then (by the above corollary) they are both splitting fields of the polynomial $x^{p^m} - x$ over J_p .

 \Rightarrow The fields are isomorphic (\because any 2 splitting fields are isomorphic)

<u>L7.1.4</u>

For every prime number p and every positive integer m, \exists a field having p^m elements.

Proof

Consider the polynomial $x^{p^m} - x$ in $J_p[x]$, the ring of polynomials. in x over J_p , the field of integers mod p.

Let K be the splitting field of this polynomial.

In K, let $F = \{a \in K/a^{p^m} = a\}$

Clearly the elements of F are the roots of $x^{p^m} - x$.

We know "(cor 2to L5.5.2) If F is a field of characteristic $p \neq 0$, then the polynomial $x^{p^n} - x \in F[x]$, for $n \ge 1$, has distinct roots."

:. The elements of F are distinct roots of $x^{p^m} - x$.

 \Rightarrow F has p^m elements.

To Prove

F is a field. Let $a, b \in F$ $\Rightarrow a^{p^m} = a \& b^{p^m} = b$ $\therefore (ab)^{p^m} = a^{p^m} b^{p^m} = ab$ $\Rightarrow a b \in F$ Also $(a \pm b)^{p^m} = a^{p^m} \pm b^{p^m}$ (:: the char is p) $= a \pm b$ $\Rightarrow a \pm b \in F$ $\therefore ab, a - b \in F \forall a, b \in F$ $\therefore F$ is a subfield of K & so is a field. \therefore We have exhibited the field F having p^m elements.

<u>T. 7.1.1</u>

For every prime number p & every positive integer m \exists a unique field having p^m elements.

<u>Proof</u>: Follows from <u>L7.1.3</u> & L 7.1.4

<u>Note</u>: The unique field having p^m elements is called the Galois field G F $[p^m]$