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5 .7 Solvability by Radicals  

Given   x
2
 + 3x + 4    over  the  field   of  rational   numbers F0 , 

the roots   are   (-3   7−  ) / 2 

   The   field   Fo( 7  i  )   is  the  splitting   field  of   X
2 
 +  3x +  4     over   Fo

 
. 

F0 ( ) =  F0 ( acb 42 − ) 

                                                        

i.e . ,         = -7 in Fo such that the extension field F0 ( ) where 
2
 =  , 

(  
2
 = b

2
 – 4ac  =  9 - 16  =  - 7 ) is such that it contains all the roots of x

2
+3x+4 .  

                                                

 From  a   slightly   different   point  of   view , given   the  general   quadratic   

polynomial   p(x) = x
2
 + a1x + a2 over  F  ,  we  can   consider  it  as  a  particular polynomial  

over  the   field  F  (a1 , a2 )  of   rational functions  in   a1, a2   over  F   ;  in  the  extension  

obtained  by   adjoining    to   F (a1,a2 )    where  


2 
=  a1

2
 – 4a2     F  (a1 ,a2 )  ,  we  find   all  the  roots  of   p(x) .

  

          (b
2
 – 4ac  in  x

2
 + bx + c )    



   There is a formula which   expresses the roots  

of  p(x)   in  terms   of   a1,a2  and   square   roots  of rational functions  of  these. 

Similarly for cubic  polynomials formulas  are available to express roots in terms of 

co-efficients and square  roots and cube roots  of   co-efficients. Consider x
3
+ a1x

2
  + a2 x + 

a3 .Adjoin   a  certain   square  root   &   then   a  cube  root to  F  (a1 , a2 , a3 )  ,  we   reach   

a  field   in   which  p(x)  has   its   roots . 

         For   4
th

 degree    polynomials   also ,  we   can   express the   roots   in   terms   of    

combinations  of radicals ( surds )  of   rational functions  of   the   co-efficients. 

        For   polynomials   of   degree   5  &   higher ,   no   such   universal radical   formula   

can   be   given ,   for    we    shall   prove that it   is   impossible     to   express     their    

roots  ,   in   general , in  this    way . 



Definition: Given  a  field  F  &  a  polynomial  p (x)    F [x] ,  we  

say  that  p (x)  is  solvable  by  radicals  over  F 

if we  can  find  a  finite  sequence  of   fields 

F1 = F (w1), F2 =F1 (w2) =  F (w1 ,w2) ,  - - - , 

Fk = Fk-1 (wk) =  F(w1,w2, . . . ,  wk)    s .t .   

w1
r
1   F ,w2

r
2,   F1,. . . , wk

r
k   F k-1  s .t . the roots of p(x) all lie in Fk .(as  in  n =2 ,  

umbersnrationaloffieldthe,F7νw2 −== ) 

                                          

Note:   Difference between 1) splitting  field   &  2)solvability. 

1)  existence  of   fields  in which  roots  exist. 

2) solving  exactly, i. e.  roots  are  expressed   in  terms   of   co- efficients  

      .i.e.  Formulae   for  roots   are  given   in   terms   of  radicals  of  rational function of                                  

co-efficients .       



Note: If   K  is  splitting   field  of  p(x)  over  F ,   then  p(x)  is  solvable  by  radicals   over  

F  if  we  can find  a  sequence of fields   as  above   such that   K C  F k   

Remark:    

If such an Fk can  be   found ,  we  can ,without loss of generality ,  assume   it  to  be  

a  normal    extension of  F .  (By   the  general polynomial of  degree  n  over  F,  

p(x) =  x
n
 + a1x

n-1
 + . . . + an  ,  we  mean   the  following: 

      Let   F (a1 , … , an )    be  the    field   of   rational functions, in n variables  a1,…,an  over 

F & consider the particular polynomial p(x) = x
n
+a1x

n-1
+...+an over the field F( a1,...,an).   

We say  that it  is  solvable  by   radicals  if  it is solvable by  radicals over  F( a1,…, an )   

This  really expresses  the  intuitive idea   of “finding a formula ’’  for the  roots  of  p(x)  

involving   combination   of  m
th

 roots, for  various  m’s   ,  of   rational   functions in  a1 , … 

, an . For  n =  2 , 3, 4,   this  can  always   be  done . 

For  n   5 ,   Abel  proved   that   this  cannot   be   done . 



In fact, we shall give a criterion for this in terms of the Galois group of the 

polynomial. But first we must develop a few purely group theoretical results. 

Definition: A group G is solvable if we can find a finite chain of subgroups 

),e(N....NNNG k210 == where each Ni is a normal subgroup of Ni-1 and 

such that every factor group Ni-1/Ni is abelian. 

Result 1    Every abelian group is solvable. 

Proof : Take No=G&N1=(e) 



  a finite chain of subgroups G=N0 ).(1 eN =  

            where N1 is a normal subgroup of N0 

                                                              ( gng
-1

=geg
-1

         N1=(e) 

                                                   =gg
-1

=e 
1N , Gg  1Ne ) 

& N0/N1 =G/(e) G is abelian. 

Every abelian group is solvable. 

Result 2 : S3 is solvable. 

Proof: S3 ={ (1), (1,2), (2,3), (3,1), (1,2,3),(1,3,2)} 

A3= {(1),(1 2 3), (1 3 2)} 



Take N0=S3, N1=A3, N2={(1)} 

Then   a finite chain of subgroups 

),e(NNNS 2103 == (is a solvable series for S3). 

We know that A3 is a normal subgroup of P3=S3 

  N1 is a normal subgroup of N0 

Also (1) =N2 is a normal group of N1 

The quotient groups N0/N1 &N1/N2 are of orders 2&3 respectively. 



We know that “all groups of order 2&3 are abelian” 

  N0/N1 &N1/N2 are abelian 

   a finite chain of subgroups ),e(NNNS 2103 ==  

            such that N0/N1 &N1/N2   are abelian . 

Hence S3 is a solvable. 

Show that  S4  is solvable. 

Proof: 

           Let A4 be the alternating group of permutations of degree 4. 

A4 is a normal subgroup of P4=S4 



Let V4 = {e, (1 2) (3 4) , (1 3) (2 4), (1 4) (2 3)} 

Clearly V4 is a normal subgroup of A4. 

Take N0=S4, N1=A4,N2=V4, & N3=(e) 

Claim: )(32104 eNNNNS ==  is a solvable series for P4=S4 .Clearly (e) is 

a normal subgroup of N2. 

The quotient groups S4/N1,N1/N2, &N2/N3 are of orders 2,3 &4 respectively. 

We know that “all groups of order up to order 5 are abelian”  

  S4/N1,N1/N2, &N2/N3  are abelian 



   a finite chain of subgroups of )(32104 eNNNNS == such that 

s.t N0/N1, N1/N2, &N2/N3  are abelian 

It is a solvable series. 

Hence S4 is solvable. 

Note:For 5n   we show in T 5.7.1 below that Sn is not solvable. 

Alternative description for solvability. 

Definition: Given the group G and elements a,b in G, then the commutator of 

a&b is the element a
-1

b
-1

ab. 

The commutator subgroup, G
1 
,of G is the subgroup of G generated by all the 

commutators in G. i.e., G
1 
is generated by{ a

-1
b

-1
ab/a,b G } 



Note: 1. We can also define the commutator of a&b to be aba
- 1

b
-1

. In this case, 

G
1
 is generated by {aba

-1
 b

-1
/ a, b   G}. 

2. The commutator subgroup G
1
 of a group is the smallest subgroup of G 

containing the set of all commutators in G. 

Result: Let G
1 

 be the commutator subgroup of  a group  

Then G is abelian iff G
1
 = (e). 

Theorem:  Let G be a group & G
1
 be the commutator subgroup of G. Then  

(i) G
1
 is normal in G. 

 (ii)G / G
1 

 is abelian 

(iii) If N is any normal subgroup of G, then G / N is  abelian iff G
1
N 

(iv) If H is a subgroup of G, such that H
'G , H is a normal subgroup of G. 



Proof:  Let U = {aba
-1 

b
-1

/a,b G }.If G
1 
 is the commutator subgroup of G,  

then G
1
 is the smallest subgroup of G containing U. 

(i) Let 'Gc&Gx   

Now cc)xc(xxcx 111 −−− =  

                   c)cxc(x 11 −−=  

Now '11 GcxcxGcx,  −−  

Gx

GcGxcx

Gc)cxc(x

Gc&Gcxcx

'11

'11

''11









−

−−

−−

 

G
1
 is normal in G. 



(ii) 1'' G/GbG,aGGb,a   

We have ab a
-1 

b
-1

U  

a)b)(G(Gb)a)(G(G

(ba)G(ab)G

G(ba)(ab)

)GU(Gbaab

''''

''

'1

''11

=

=





−

−− 

 

G/G′ is abelian 



 (iii)Let N be any normal subgroup of G. 

Let a,b G Na,Nb G /N 

Let G/N be abelian. 

Then (Na) (Nb) = (Nb) (Na) 

NUNbaba

N)ba)(ab(

NbaNab

11

1





=

−−

−  

(aba
-1

b
-1

 is any element of U) 

N is the sub group of G containing U. 

But G
1
is the smallest subgroup of G containing U. 

  'GN   



Conversely, let G
’
N 

Now G
’ 
is the Smallest subgroup of G Containing U & G

’
N  

(Na)(Nb)(Nb)(Na)

NbaNab

N(ba)(ab)

Nbaba

NU

NGU

1

11

1

=

=









−

−−

 

N/G  is abelian 



(iv) Given  

 H is a subgroup of G such that H  G
1
 

Let gG & hH 

Then h)(h)g(ghggh 111 −−− =  

          h)hg(gh 11 −−=  

Now '11 Ghggh −−  

HhG,gHggh

Hh)hg(gh

Hh&Hhggh

Hhggh

1

11

11

11









−

−−

−−

−−

 

H is the normal sub group of G. 



Note:  G
’
 is a group in its own right, so we can speak of its commutator subgroup G

(2)  

= (G
1
)
1 

i.e., G
(2) 

 is the subgroup of G generated by all elements  

a
1
b

1 
(a

1
)

-1 
(b

1
)
-1

 or (a
1
)
-1 

(b
1
)
-1 

a
1
b

1 
where a

1
,b

1
 'G  

We know G
1
 is normal in G. 

  (2)1 G)(G
1

=  is normal in G
’.  It can be easily proved that G

(2)
 is normal in G as 

well. 

Continuing in this way we can define higher commutator subgroup G
(m)

 by G
(m)

 

= (G
(m-1)

)
! 



This G
(m) 

 is called m
th

  commutator sub group or m
 th

 derived subgroup of G. It 

is easy to see that G
(m) 

 is a normal subgroup of G. 

We know  G/G
’
 is abelian. 

G
 (m-1) 

/ G
 (m)

 is abelian. 

(In terms of higher commutator subgroups of a group G we have a very succinct 

(important) criterion for solvability of G.) 

L 5.7.1  A group G is solvable it G 
(k) 

= (e) for some integer k. 

Proof :  The ‘if’ part 

Let G
(k) 

= (e) for some integer k. 

 To Prove G is solvable. 

Let No = G, N1 = G
1
, N2 = G

 (2),
 ..., Nk = G

(k) 
= (e) 



Then (e)N...NNNG k21o ==  

we know G
1
 is a normal subgroup of G. 

')1i()i( )G(G −=  is a normal sub group of )1i(G −  for each i. 

Ni  is a normal subgroup of 
1iN −
 for each i. 

Also 
'1)(i

1)(i

(i)

1)(i

i

1i

)(G

G

G

G

N

N
−

−−

− ==  

we know that G / G
’
 is abelian 

1)1i(

)1i(

)G(

G
−

−

  is abelian 

Ni-1 / Ni is abelian for each i. 



   a finite chain of subgroups. 

(e)N...NNNG k21o == , where each Ni is a normal subgroup of Ni-1  and such 

that every factor group Ni-1 / Ni  is  abelian. 

G is solvable. 

‘only if’ part 

Let G be a solvable Group. 

   a finite chain of subgroups )(...21 eNNNNoG k == ,  

  where each Ni is a normal subgroup of Ni-1 and such that every factor group Ni-1 / Ni is 

abelian.  



we know “If N is normal subgroup of G, then G/N is abelian iff  

G
1
 N ” 

So Ni-1 / Ni    is abelian N
1

i-1 N i 

          1NiNi ' −  for each i. Hence   

    

)k(

k

)i(

i

)3(1)2('

23

)2(1''

12

''

01

GN

GN

G)G(NN

G)G(NN

GNN





=

=

=



  















(e). = G  Hence

always. G   (e)But 

G  N = (e) k, someFor  

(k)

(k)

(k)

k

 

 

Corollary:  If G is a solvable group and if G  is a homomorphic image of G,  

 then G  is solvable. 

Proof :   G  is a homomorphic image of G 

 ( G )
 (k) 

is the image of G
 (k)

 

Now G is solvable G 
(k) =

 (e) for some k. 

                                (G )
 (k) 

= (e) for the same k. 

   (  a homomorphism maps identity to identity) 

    G  is solvable. 



(The nNext lemma is the key step in proving that Sn , n   5 is  not solvable). 

L 5.7.2  




n

(k)

n

 S of cycle-3every  contains1,2,..., =k 

for  G then 5;  n   whereS =G Let 
 

Proof: We know “If N is a normal subgroup of a group G, then the commutator subgroup N
’
 

of N is also normal subgroup of G.” 

Claim: If N is a normal subgroup of G = Sn where n   5, 

         which contains every 3- cycle in Sn ,  

   then N
’
 must also contain every 3- cycle. 

Suppose a = (1 2 3) , b = (1 4 5) are in N. 

Then a
-1 

b
-1 

ab = (3 2 1) (5 4 1) (1 2 3) (1 4 5) = (1 4 2) 



Also a
-1 

b
-1 

ab N
’
 (as a commutator of elements of N) 

  (1 4 2) N
’ 
 Π

-1
 (1 4 2) Π N

’
  

nSΠ (N
’
 is normal) 

Now let (i1,i2,i3) be any 3- cycle in Sn 

                                    where i1,i2,i3 are any 3 distinct integers between 1&n. 

Choose Π  in Sn Such that Π  (1) = i, Π (4) = i2 & Π (2) = i3. 

Then Π
-1

 (1 4 2) Π = (i1,i2,i3)  (i1 goes to 1 under Π
-1

 

                                                  1 goes to 4 under (1 4 2) 

                                                  4 goes to i2 under Π  

                             So i1 goes to i2 under Π
-1

 (1 4 2) Π . 

       Similarly i2 goes to i3, i3 goes to i1 ). 



 (i1,i2,i3) N
1
. 

  N
’
 contains all 3-cycles.  

Let N = G. 

G is normal in G & contains all 3- cycles 

G
’
 contains all 3- cycles.  

Similarly G
’ 
is normal in G 

 (G
1
)

’
 contains all 3- cycles.  

 Similarly
 
G

(2)
  is normal in G. 

 (G
2
)

 1 
= G

(3)
 contains all 3- cycles. 

Continuing in this way, we conclude that G
 (K)

 contains all 3- cycles for arbitrary k. 

(A direct consequence of this lemma is the interesting group theoretic result) 



T 5.7.1    Sn is not solvable for n5 

Proof  If G = Sn, G 
(K)

 contains all 3-cycles in Sn for every k where n5  

G
(k)

  (e) for any k. 

G = Sn , n5, is not solvable. 

(Interrelating the solvability by radicals of p(x) with the solvability of the Galois 

group of p(x). But first we need a result about the Galois group of a certain type of 

polynomial.) 



L 5.7.3   Suppose that the field F contains all the n
th
 roots of unity (for some particular n) 

& suppose that a 0 in F. Let x
n
-a F[x] & let K be its splitting field over F. 

Then (1) K = F(u) where u is any root of x
n
-a. 

(2) The Galois group of x
n
-a over F is abelian. 

 Proof:  F has all n
th

 roots  ( Πir/n2
e , r = 0 to n-1)  of unity. 

   F has  = Πi/n2
e  

 Note 
n 
= 1 but 1m   for 0 < m < n. 

 Let u   K be any root of x
n
-a.  

  u,....,u,u,u 1n2 −  are all the roots of x
n
-a.  



These roots are distinct, for, 

                                 uu ji  =  with nji 0  

                        

n1j0to1ξ

ξξ

0)u(0ξξ

0u)ξ(ξ

ij

ji

ji

ji

−=

=

=−

=−

−


 

  )u(FF    

 all of 1nξξu,...,u, − u  are in F(u)  

 F(u) splits x
n
-a 

Also no proper subfield of F (u) which contains F also contains u. 

   No proper subfield of F (u) can split x
n
-a. 



F(u) is the splitting field of x
n
-a. 

  Hence K = F (u) 

To Prove  G (K, F) is abelian. 

          Let )F,K(G,   

             &  are automorphisms of K = F(u) leaving every element of F fixed. 

             )u(&)u(  are roots of ax n −  (  u is a root of x
n
-a) 

            u)u(&u)u( ji  == for some i& j. 

F)G(K,τ,στσστ

.uτσ(u)στ(u)

.uξτσ(u)lll

.uξuξξ

F))ξ(σ(u)ξu)σ(ξστ(u)

jily

jiij

jjj

=

=

=

==

==

+

+

K



 

  The Galois group G(K,F) is abelian. 



    Note:From the Lemma, if F has all n
th
 roots of unity, 

           then adjoining one root of x
n
-a to F, where a   F,   

                              gives us the splitting field of x
n
-a & 

                             K = F(u) i.e., the splitting field is a normal extension of F. 

              T 5.7.2  Let F be a field which contains all n
th
 roots of unity for every integer n. 

                 If p(x)   F[x] is solvable by radicals over F, 

                                                               then the Galois group ,over F, 

                                           of p(x) is a solvable group. 

               Proof. 

                 Let K be the splitting field of p(x) over F 

                 the Galois group of p(x) over F is G(K,F). 

                Given:  p(x) is solvable by radicals 



              a sequence of fields  

          )w(FF...)w(FF)w(FFF k1kk21211 −===  

              where 
k

FK&
1k

Fk
r

k
w,...,1F

2
r

1wF,1
r

1w 
−

  

      (by note of L.5.7.3)  Without Loss of Generality, assume that Fk is normal extension of F. 

        Also Fk is normal extension of each Fi. 

           (Again by note) Each Fi is a normal extension of Fi-1, & since Fk is normal over  

                     Fi-1, by F T G T (T 5.6.6) 

     G (Fk, Fi) is a normal sub group in G (Fk, Fi-1) 

     Consider the chain G (Fk, F)  G (Fk, F1)   G (Fk, F2)  ...  

                                                            G (Fk, Fk-1)  (e). - - ->  (1) 

       Note that each subgroup in this chain is a normal subgroup in the one                              

proceeding it. 



     By F T G T, G(Fi,Fi-1)   G(Fk,Fi-1) / G(Fk, Fi) 

(L 5.7.3) we know The Galois group G ( )
1i

F,
i

F
−  is abelian 

  each quotient group G (Fk, Fi-1) / G(Fk,Fi) of the chain (1) is abelian 

  G ( )F,
k

F  is solvable. 

 

    Now K   FK & K is a normal extension of F(being a splitting field) 

G(Fk ,K) is a normal subgroup of G (Fk,F) & 

 G(K,F) G(Fk , F) / G(Fk,K)    ( by F T G T) 

  G (K,F) is a homomorphic image of G(Fk,F) 

  G (K,F) is solvable 

(  G(Fk ,F) is solvable & 

               homomorphic image of a solvable  group is solvable ) 

  The Galois group of p(x) over F is solvable. 



NNote: 1The converse of above theorem is true  

2.Theorem & its converse are true even if F does not contain roots of unity. 

Meaning of the general polynomial of degree n. 

       Let F(a1,....,an) be the field of rational functions  in the n invariables a1,…,an  over 

F. 

p(x) = x
n 
+ a1 x

n-1
 +...+an over the field F (a1, a2,...,an) is called the general polynomial 

of degree n over the field F. 

P(x) is solvable by radicals if it is solvable by radicals over F(a1, a2,...,an). 

It is easy to show that the Galois group of   

     p(x) = x
n 
+ a1 x

x-1
 +...+an   over  F(a1,...,an)  is  Sn. 



T 5.7.3   (Abel’s theorem) The general polynomial of degree n   5 is not solvable by 

radicals. 

Proof. (T 5.6.3) If F(a1,...,an) is the field of rational functions in the n variables a1,...,an then 

the Galois group of  

p(t) = a0 + a1t
n-1

+...+an over  F(a1, a2,...,an) is Sn. 

(T 5.7.1) Sn is not a solvable group when n   5. 

(T 5.7.2) p(t) is not solvable by radicals over F(a1,...,an) when n   5.  

                                     



7.1 finite fields
L 7.1.1  Let F be a finite field with q elements &suppose that F   K where K is also a finite 

field. Then K has q
n
 elements where n = [K: F] 

Proof;  F   K & K is finite 

   K is a finite dimension vector space over F  

   [K: F] = n 

 Let a basis of K over F be v1,v2 ,..., vn 

 Then every element in K has a unique representation in the form nvn...2v21v1  +++                                                                                                                                

where Fn,...,2,1                                                                             

    Number of elements in K= the number of 
nn2211 v...vv  +++  as the 

n21 ,...,,                                                                            

range over   F & |F| = q 

        |K| = nq  since each co-efficient can have q values. 



Corollary:1  

Let F be a finite field. Then F has m
p  elements where the prime number p is the 

characteristic of F 

Proof: 

F has a finite number of elements 

  f 1 = 0 where f = | F |            ( )e)o(
a =

G    (if G is finite.) 

  F has characteristic p for some prime number p 

  F contains a field p0 JF  .  Note 0F has p elements  

  F has m
p elements where m = [F: F0] (by L 7.1.1)  



Corollary: 2   If the finite field F has m
p  elements, then every a   F satisfies 

mp
a  = a  

Proof; If a = 0 then clearly
mp

a  = a  

  On the other hand, the non zero elements of F form a group under multiplication  

              of   order  1
m

p −  

 1
m

pa −  = 1   a   0 in F.  (  ea Go =)(  ) (if G is finite.) 

   
mp

a = a 

(From corollary 2 we can easily pass to ) 



L.7.1.2  

 If the finite field F has p
m
 elements, then the polynomial x

mp
x −  in F[x] factors  in F[x] as 

x
mp

x −   =  ( )


−


x
F

 

Proof: 

 we know that 5.3.2)(L  “A polynomial of degree n over a field can have atmost n roots 

in any extension field.” 

   x
mp

x −  has at most mp  roots in F. 

We know that 7.1.1)toL2(cor  If the finite field F has mp elements, then every a F satisfies 

mp
a = "a  

   all the mp  elements of F are roots of x
mp

x − . 

Also we know that )15.3.Lto(cor  If a K is a root of ( ) ]xF[xp  , where F  K, then in ]x[K , 

(x-a) | p(x).” 

   For each Fλ , ( )
mp

x|λx− - x. 

 x
mp

x − =  ( )


−


x
F

 



Corollary; l 

  If the field F has p
m
 elements, then F is the splitting field of the polynomial x

mp
x −  

Proof; 

  By L 7.1.2, x
mp

x −  certainly splits in F. However, it cannot split in any smaller field 

for that field would have to have all the roots of this polynomial & so would have to have at 

least m
p  elements. Thus F is the splitting field of x

mp
x − . 



L 7.1.3  

  Any two finite fields having the same number of elements are 

isomorphic 

Proof: 

   Let these fields have m
p elements. 

Then (by the above corollary) they are both splitting fields of the polynomial 

x
mp

x −  over pJ .  

  The fields are isomorphic (  any 2 splitting fields are isomorphic) 

L7.1.4   

  For every prime number p and every positive integer m,   a field 

having p
m
 elements. 

Proof 

 Consider the polynomial x
mp

x −  in pJ [x], the ring of polynomials. in 

x over pJ , the field of integers mod p. 

 Let K be the splitting field of this polynomial. 

 In K,  let a}
mp

/a{aF == K  

 Clearly the elements of F are the roots of x
mp

x − . 



We know “(cor 2to L5.5.2) If F is a field of characteristic p   0, then the polynomial 

x
np

x − F[x], for 1n  ,has distinct roots.” 

 The elements of F are distinct roots of x
mp

x − . 

   F has p
m
 elements. 

To Prove 

 F is a field. 

 Let a,b   F  

  
mp

a  = a & 
mp

b  = b 

 
mp

(ab)  = 
mp

a  
mp

b  = ab 

   a b   F 



Also  
mp

b)  (a   = 
mp

a   
mp

b  (  the char is p) 

                          = a   b 

           a b   F 

    ab, a –b   F  a, b   F 

           F is a subfield of K & so is a field. 

           We have exhibited the field F having p
m
 elements. 

T. 7.1.1   

 For every prime number p & every positive integer m   a unique field having p
m
 

elements.  

Proof: Follows from L7.1.3 & L 7.1.4 

Note;  The unique field having p
m
 elements is called the Galois field G F [p

m
] 


